Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 49(14): 3938-3941, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008745

RESUMEN

Phosphor-in-glass-film (PiG-F) has been extensively investigated, showing great potential for use in laser lighting technique. Thickness is apparently a key parameter for PiG-F, affecting the heat dissipation, absorption, and reabsorption, thus determining the luminous efficacy and luminescence saturation threshold (LST). Conventional studies suggest that thinner films often have lower thermal load than that of the thicker ones. Unexpectedly, we found that the Lu3Al5O12:Ce (LuAG:Ce)-based PiG-F with a moderate thickness (78 µm) yielded the optimal LST of 31.9 W (14.2 W·mm-2, rather than 28.0 W (12.3 W·mm-2) for the thinnest one (56 µm). This unexpected result was further verified by thermal simulations. With the high saturation threshold together with a high luminous efficacy (∼296 lm·W-1), an ultrahigh luminous flux of 7178 lm with a luminous exitance of 2930 lm·mm-2 was thus attained. We believe the new, to the best of our knowledge, findings in this study will substantially impact the design principles of phosphors for laser lighting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA