Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 477: 135376, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39111175

RESUMEN

Avermectin is a highly effective insecticide that has been widely used in agriculture since the 1990s. In recent years, the safety of avermectin for non-target organisms has received much attention. The vasculature is important organs in the body and participate in the composition of other organs. However, studies on the vascular safety of avermectin are lacking. The vasculature of zebrafish larvae is characterized by ease of observation and it is a commonly used model for vascular studies. Therefore, zebrafish larvae were used to explore the potential risk of avermectin on the vasculature. The results showed that avermectin induced vascular damage throughout the body of zebrafish larvae, including the head, eyes, intestine, somite, tail and other vasculature. The main forms of damage are reduction in vascular diameter, vascular area and vascular abundance. Meanwhile, avermectin induced a decrease in the number of endothelial cells and apoptosis within the vasculature. In addition, vascular damage may be related to impairment of mitochondrial function and mitochondria-mediated apoptosis. Finally, exploration of the molecular mechanisms revealed abnormal alterations in the expression of genes related to the VEGF/Notch signaling pathway. Therefore, the VEGF/Notch signaling pathway may be an important mechanism for avermectin-induced vascular damage in zebrafish larvae. This study demonstrates the vascular toxicity of avermectin in zebrafish larvae and reveals the possible molecular mechanism, which would hopefully draw more attention to the safety of avermectin in non-target organisms.


Asunto(s)
Apoptosis , Ivermectina , Larva , Mitocondrias , Receptores Notch , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Pez Cebra , Animales , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Larva/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Receptores Notch/metabolismo , Insecticidas/toxicidad , Vasos Sanguíneos/efectos de los fármacos
2.
Environ Sci Technol ; 58(6): 2931-2943, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38306257

RESUMEN

From a "One Health" perspective, the global threat of antibiotic resistance genes (ARGs) is associated with modern agriculture practices including agrochemicals application. Chiral fungicides account for a considerable proportion of wildly used agrochemicals; however, whether and how their enantiomers lead to differential proliferation of antibiotic resistance in agricultural environments remain overlooked. Focused on the soil-earthworm ecosystem, we for the first time deciphered the mechanisms underlying the enantioselective proliferation of antibiotic resistance driven by the enantiomers of a typical chiral fungicide mandipropamid (i.e., R-MDP and S-MDP) utilizing a multiomic approach. Time-series metagenomic analysis revealed that R-MDP led to a significant enhancement of ARGs with potential mobility (particularly the plasmid-borne ARGs) in the earthworm intestinal microbiome. We further demonstrated that R-MDP induced a concentration-dependent facilitation of plasmid-mediated ARG transfer among microbes. In addition, transcriptomic analysis with verification identified the key aspects involved, where R-MDP enhanced cell membrane permeability, transfer ability, biofilm formation and quorum sensing, rebalanced energy production, and decreased cell mobility versus S-MDP. Overall, the findings provide novel insights into the enantioselective disruption of microbiome and resistome in earthworm gut by chiral fungicides and offer significant contributions to the comprehensive risk assessment of chiral agrochemicals in agroecosystems.


Asunto(s)
Fungicidas Industriales , Microbioma Gastrointestinal , Oligoquetos , Animales , Oligoquetos/genética , Fungicidas Industriales/farmacología , Fungicidas Industriales/análisis , Genes Bacterianos , Ecosistema , Estereoisomerismo , Farmacorresistencia Microbiana/genética , Suelo , Antibacterianos/farmacología , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA