RESUMEN
Chrysanthemum indicum Linnén (C. indicum), a medicinal and food herb with various bioactive components, may be of beneficial use in cosmetics and the treatment of skin-related diseases. However, to date, few studies have been reported on its potential preventive and therapeutic effects on skin cancer. Therefore, the present study aimed to investigate the effect and potential mechanism of action of supercritical carbon dioxide extract from C. indicum (CISCFE) on UV-induced skin cancer in a mouse model. Kunming mice were allocated randomly to five treatment groups: Sham, model, low concentration CISCFE, high concentration CISCFE and positive control nicotinamide groups. The dorsal skin of mice was irradiated with UV light for 31 weeks. Histopathological changes, ELISA assays, immunohistochemical analysis and western blotting were performed to investigate the potential therapeutic effects of CISCFE. The results showed that CISCFE alleviated skin oxidative and inflammatory damage in a UV-induced mouse model of skin cancer. Moreover, CISCFE suppressed abnormal activation of proto-oncogene c-Myc and the overexpression of Ki-67 and VEGF, and increased expression of the anti-oncogene PTEN, thereby reducing abnormal proliferation of the epidermis and blood vessels. Additionally, CISCFE increased the protein expression levels of NAD-dependent protein deacetylase sirtuin-1 (SIRT1), Kelch-like ECH associated protein 1 (Keap1) and inhibited the expression of nuclear factor 2 erythroid 2-related factor 2 (Nrf2), phosphorylated (p)-p62 (Ser 349), p-p65 and acetyl-p65 proteins in a UV-induced skin cancer mouse model. In summary, CISCFE exhibited potent anti-skin cancer activity, which may be attributed its potential effects on the p62/Keap1-Nrf2 and SIRT1/NF-κB pathways.
RESUMEN
Pogostone, isolated from Pogostemon cablin, has many biological activities such as potential antibacterial, anticandida, and antifungal. Traditional extraction leads to low output of PO about 17.6 mg/kg from Herba Pogostemonis. The previous literature had reported a synthetic study and the yield had reached 4.48% with strictly controlled reaction conditions. The two methods above cannot meet the large demand of PO; we report a new synthesis method. 4-hydroxy-6-methyl-2-pyrone (1) was added in toluene, with the existence of acylation catalyst 4-dimethylaminopyridine (DMAP), 4-methylvaleric acid (2), and condensing agent dicyclohexylcarbodiimide (DCC), PO was synthesized after the combination of 3-carbon of (1) with 1-OH of (2) in the acylation reaction. The purity had reached 98%, determined by HPLC. The structure was confirmed by spectroscopic methods including infrared, electron ionization mass spectrometry, and nuclear magnetic resonance spectroscopy. PO was totally synthesized in one step including cyclization, with total yield of 27.2%.