Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 650
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38931519

RESUMEN

The domain of gamma-ray imaging necessitates technological advancements to surmount the challenge of energy-selective imaging. Conventional systems are constrained in their dynamic focus on specific energy ranges, a capability imperative for differentiating gamma-ray emissions from diverse sources. This investigation introduces an innovative imaging system predicated on the detection of recoil electrons, addressing the demand for adjustable energy selectivity. Our methodology encompasses the design of a gamma-ray imaging system that leverages recoil electron detection to execute energy-selective imaging. The system's efficacy was investigated experimentally, with emphasis on the adaptability of the energy selection window. The experimental outcomes underscore the system's adeptness at modulating the energy selection window, adeptly discriminating gamma rays across a stipulated energy spectrum. The results corroborate the system's adaptability, with an adjustable energy resolution that coincides with theoretical projections and satisfies the established criteria. This study affirms the viability and merits of utilizing recoil electrons for tunable energy-selective gamma-ray imaging. The system's conceptualization and empirical validation represent a notable progress in gamma-ray imaging technology, with prospective applications extending from medical imaging to astrophysics. This research sets a solid foundation for subsequent inquiries and advancements in this domain.

2.
Nat Commun ; 15(1): 5094, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877020

RESUMEN

Interactions between osteolineage cells and myeloid cells play important roles in maintaining skeletal homeostasis. Herein, we find that osteolineage cells transfer mitochondria to myeloid cells. Impairment of the transfer of mitochondria by deleting MIRO1 in osteolineage cells leads to increased myeloid cell commitment toward osteoclastic lineage cells and promotes bone resorption. In detail, impaired mitochondrial transfer from osteolineage cells alters glutathione metabolism and protects osteoclastic lineage cells from ferroptosis, thus promoting osteoclast activities. Furthermore, mitochondrial transfer from osteolineage cells to myeloid cells is involved in the regulation of glucocorticoid-induced osteoporosis, and glutathione depletion alleviates the progression of glucocorticoid-induced osteoporosis. These findings reveal an unappreciated mechanism underlying the interaction between osteolineage cells and myeloid cells to regulate skeletal metabolic homeostasis and provide insights into glucocorticoid-induced osteoporosis progression.


Asunto(s)
Resorción Ósea , Ferroptosis , Mitocondrias , Células Mieloides , Osteoclastos , Osteoporosis , Animales , Mitocondrias/metabolismo , Resorción Ósea/metabolismo , Resorción Ósea/patología , Osteoclastos/metabolismo , Células Mieloides/metabolismo , Osteoporosis/metabolismo , Osteoporosis/patología , Ratones , Glucocorticoides/metabolismo , Glutatión/metabolismo , Ratones Endogámicos C57BL , Diferenciación Celular , Ratones Noqueados , Humanos , Masculino
3.
Sci Adv ; 10(26): eadk2913, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941455

RESUMEN

The blood-brain barrier (BBB) acts as the crucial physical filtration structure in the central nervous system. Here, we investigate the role of a specific subset of astrocytes in the regulation of BBB integrity. We showed that Dmp1-expressing astrocytes transfer mitochondria to endothelial cells via their endfeet for maintaining BBB integrity. Deletion of the Mitofusin 2 (Mfn2) gene in Dmp1-expressing astrocytes inhibited the mitochondrial transfer and caused BBB leakage. In addition, the decrease of MFN2 in astrocytes contributes to the age-associated reduction of mitochondrial transfer efficiency and thus compromises the integrity of BBB. Together, we describe a mechanism in which astrocytes regulate BBB integrity through mitochondrial transfer. Our findings provide innnovative insights into the cellular framework that underpins the progressive breakdown of BBB associated with aging and disease.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Células Endoteliales , Mitocondrias , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Animales , Mitocondrias/metabolismo , Ratones , Células Endoteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética
4.
Plant Physiol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38850036

RESUMEN

Water transportation to developing tissues relies on the structure and function of plant xylem cells. Plant microtubules govern the direction of cellulose microfibrils and guide secondary cell wall formation and morphogenesis. However, the relevance of microtubule-determined xylem wall thickening patterns in plant hydraulic conductivity remains unclear. In the present study, we identified a maize (Zea mays) semi-dominant mutant, designated drought-overly-sensitive1 (ZmDos1), the upper leaves of which wilted even when exposed to well-watered conditions during growth; the wilting phenotype was aggravated by increased temperatures and decreased humidity. Protoxylem vessels in the stem and leaves of the mutant showed altered thickening patterns of the secondary cell wall (from annular to spiral), decreased inner diameters, and limited water transport efficiency. The causal mutation for this phenotype was found to be a G-to-A mutation in the maize gene α-tubulin4, resulting in a single amino acid substitution at position 196 (E196K). Ectopic expression of the mutant α-tubulin4 in Arabidopsis (Arabidopsis thaliana) changed the orientation of microtubule arrays, suggesting a determinant role of this gene in microtubule assembly and secondary cell wall thickening. Our findings suggest that the spiral wall thickenings triggered by the α-tubulin mutation are stretched during organ elongation, causing a smaller inner diameter of the protoxylem vessels and affecting water transport in maize. This study underscores the importance of tubulin-mediated protoxylem wall thickening in regulating plant hydraulics, improves our understanding of the relationships between protoxylem structural features and functions, and offers candidate genes for the genetic enhancement of maize.

5.
J Cell Mol Med ; 28(11): e18462, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847478

RESUMEN

Osteosarcoma (OS) is the most common primary malignant bone tumour in children and young adults. Account for 80% of all OS cases, conventional OS are characterized by the presence of osteoblastic, chondroblastic and fibroblastic cell types. Despite this heterogeneity, therapeutic treatment and prognosis of OS are essentially the same for all OS subtypes. Here, we report that DEC2, a transcriptional repressor, is expressed at higher levels in chondroblastic OS compared with osteoblastic OS. This difference suggests that DEC2 is disproportionately involved in the progression of chondroblastic OS, and thus, DEC2 may represent a possible molecular target for treating this type of OS. In the human chondroblastic-like OS cell line MNNG/HOS, we found that overexpression of DEC2 affects the proliferation of the cells by activating the VEGFC/VEGFR2 signalling pathway. Enhanced expression of DEC2 increased VEGFR2 expression, as well as increased the phosphorylation levels at sites Y951 and Y1175 of VEGFR2. On the one hand, activation of VEGFR2Y1175 enhanced cell proliferation through VEGFR2Y1175-PLCγ1-PKC-SPHK-MEK-ERK signalling. On the other hand, activation of VEGFR2Y951 decreased mitochondria-dependent apoptosis rate through VEGFR2Y951-VARP-PI3K-AKT signalling. Activation of these two signalling pathways resulted in enhanced progression of chondroblastic OS. In conclusion, DEC2 plays a pivotal role in cell proliferation and apoptosis-resistance in chondroblastic OS via the VEGFC/VEGFR2 signalling pathway. These findings lay the groundwork for developing focused treatments that target specific types of OS.


Asunto(s)
Neoplasias Óseas , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Osteosarcoma , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Línea Celular Tumoral , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Animales , Apoptosis/genética , Fosforilación
6.
Med Image Anal ; 96: 103214, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815358

RESUMEN

Multi-modal ophthalmic image classification plays a key role in diagnosing eye diseases, as it integrates information from different sources to complement their respective performances. However, recent improvements have mainly focused on accuracy, often neglecting the importance of confidence and robustness in predictions for diverse modalities. In this study, we propose a novel multi-modality evidential fusion pipeline for eye disease screening. It provides a measure of confidence for each modality and elegantly integrates the multi-modality information using a multi-distribution fusion perspective. Specifically, our method first utilizes normal inverse gamma prior distributions over pre-trained models to learn both aleatoric and epistemic uncertainty for uni-modality. Then, the normal inverse gamma distribution is analyzed as the Student's t distribution. Furthermore, within a confidence-aware fusion framework, we propose a mixture of Student's t distributions to effectively integrate different modalities, imparting the model with heavy-tailed properties and enhancing its robustness and reliability. More importantly, the confidence-aware multi-modality ranking regularization term induces the model to more reasonably rank the noisy single-modal and fused-modal confidence, leading to improved reliability and accuracy. Experimental results on both public and internal datasets demonstrate that our model excels in robustness, particularly in challenging scenarios involving Gaussian noise and modality missing conditions. Moreover, our model exhibits strong generalization capabilities to out-of-distribution data, underscoring its potential as a promising solution for multimodal eye disease screening.


Asunto(s)
Oftalmopatías , Humanos , Oftalmopatías/diagnóstico por imagen , Imagen Multimodal , Reproducibilidad de los Resultados , Interpretación de Imagen Asistida por Computador/métodos , Algoritmos , Aprendizaje Automático
7.
Signal Transduct Target Ther ; 9(1): 124, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744846

RESUMEN

Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Enfermedades Mitocondriales/metabolismo , ADN Mitocondrial/genética , MicroARNs/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Animales
8.
Toxicology ; 505: 153810, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653377

RESUMEN

Black phosphorus (BP) is a new type of nanomaterial, which has been widely used in many biomedical fields due to its superior properties, but there are few studies on the toxicity of BP, especially in the reproductive system. To explore the effects of BP exposure on reproduction and reveal its molecular mechanism, we firstly investigated the potential toxicity of black phosphorus nanoparticles (BPNPs) in vivo. The results showed that BP exposure in pregnant mice can reduce the weight of fetal mice and placenta. H&E staining further indicated the changes of placental cross-section and vascular remodeling after BP treatment. Then, human exvillous trophoblast HTR8/SVneo was treated with different concentrations of BPNPs. We found that BPNPs induced significant cytotoxicity, including dose-dependent reduction of cell viability and proliferation. Trophoblast cell migration and invasion were also impaired by BPNPs exposure. Moreover, pretreatment with Cytochalasin D (Cyto-D), a classical phagocytic inhibitor, alleviated the decline of cell viability induced by BPNPs. Transcriptome sequencing showed that BPNPs exposure led to ferroptosis. Subsequently, the related indexes of ferroptosis were detected, including increase of iron ion concentration, decrease of the ferroptosis marker, GPX4 (Glutathione Peroxidase 4), increase of FTL (Ferritin Light Chain), and increase of lipid peroxidation indexes (MDA level and decrease of GSH level). In addition, ferroptosis inhibitors (Fer-1 and DFO) pretreatment can alleviate both the cytotoxic effects and functional impairment induced by BPNPs. In summary, our study confirmed the reproductive toxicity of BPNPs for the first time, and constructed BPNPs injury model in vitro using human villus trophoblast cells and revealed the role of ferroptosis in this process, which deepened our understanding of the biosafety of black phosphorus nanomaterials.


Asunto(s)
Supervivencia Celular , Ferroptosis , Nanopartículas , Fósforo , Trofoblastos , Ferroptosis/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Trofoblastos/patología , Femenino , Animales , Humanos , Nanopartículas/toxicidad , Ratones , Embarazo , Supervivencia Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Placenta/efectos de los fármacos , Placenta/metabolismo , Placenta/patología
9.
BMC Plant Biol ; 24(1): 230, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561687

RESUMEN

BACKGROUND: Dendrobium spp. comprise a group of tropical orchids with ornamental and medicinal value. Dendrobium spp. are sensitive to low temperature, and the underlying cold response regulatory mechanisms in this group are unclear. To understand how these plants respond to cold stress, we compared the transcriptomic responses of the cold-tolerant cultivar 'Hongxing' (HX) and the cold-sensitive cultivar 'Sonia Hiasakul' (SH) to cold stress. RESULTS: Chemometric results showed that the physiological response of SH in the later stages of cold stress is similar to that of HX throughout the cold treatment. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed that soluble protein content and peroxidase activity are key physiological parameters for assessing the cold tolerance of these two Dendrobium spp. cultivars. Additionally, weighted gene co-expression network analysis (WGCNA) results showed that many cold response genes and metabolic pathways significantly associated with the physiological indices were enriched in the 12 detected modules. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses of the 105 hub genes showed that Dendrobium spp. adapt to cold stress by regulating signal transduction, phytohormones, transcription factors, protein translation and modification, functional proteins, biosynthesis and metabolism, cell structure, light, and the circadian clock. Hub genes of the cold stress response network included the remorin gene pp34, the abscisic acid signaling pathway-related genes PROTEIN PHOSPATASE 2 C (PP2C), SNF1-RELATED PROTEIN KINASE 2 (SnRK2), ABRE-BINDING FACTOR 1 (ABF1) and SKI-INTERACTING PROTEIN 17 (SKIP17), the Ca2+ signaling-related GTP diphosphokinase gene CRSH1, the carbohydrate-related gene STARCH SYNTHASE 2 (SS2), the cell wall biosynthesis gene CINNAMYL ALCOHOL DEHYDROGENASE (CAD7), and the endocytosis-related gene VACUOLAR PROTEIN SORTING-ASSOCIATED PROTEIN 52 A (VPS52A). CONCLUSIONS: The cold-responsive genes and metabolic pathways of Dendrobium spp. revealed in this study provide important insight to enable the genetic enhancement of cold tolerance in Dendrobium spp., and to facilitate cold tolerance breeding in related plants.


Asunto(s)
Respuesta al Choque por Frío , Dendrobium , Respuesta al Choque por Frío/genética , Dendrobium/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
10.
J Orthop Translat ; 45: 140-154, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38559899

RESUMEN

Background: Cartilage tissue engineering faces challenges related to the use of scaffolds and limited seed cells. This study aims to propose a cost-effective and straightforward approach using costal chondrocytes (CCs) as an alternative cell source to overcome these challenges, eliminating the need for special culture equipment or scaffolds. Methods: CCs were cultured at a high cell density with and without ascorbic acid treatment, serving as the experimental and control groups, respectively. Viability and tissue-engineered constructs (TEC) formation were evaluated until day 14. Slices of TEC samples were used for histological staining to evaluate the secretion of glycosaminoglycans and different types of collagen proteins within the extracellular matrix. mRNA sequencing and qPCR were performed to examine gene expression related to cartilage matrix secretion in the chondrocytes. In vivo experiments were conducted by implanting TECs from different groups into the defect site, followed by sample collection after 12 weeks for histological staining and scoring to evaluate the extent of cartilage regeneration. Hematoxylin-eosin (HE), Safranin-O-Fast Green, and Masson's trichrome stainings were used to examine the content of cartilage-related matrix components in the in vivo repair tissue. Immunohistochemical staining for type I and type II collagen, as well as aggrecan, was performed to assess the presence and distribution of these specific markers. Additionally, immunohistochemical staining for type X collagen was used to observe any hypertrophic changes in the repaired tissue. Results: Viability of the chondrocytes remained high throughout the culture period, and the TECs displayed an enriched extracellular matrix suitable for surgical procedures. In vitro study revealed glycosaminoglycan and type II collagen production in both groups of TEC, while the TEC matrix treated with ascorbic acid displayed greater abundance. The results of mRNA sequencing and qPCR showed that genes related to cartilage matrix secretion such as Sox9, Col2, and Acan were upregulated by ascorbic acid in costal chondrocytes. Although the addition of Asc-2P led to an increase in COL10 expression according to qPCR and RNA-seq results, the immunofluorescence staining results of the two groups of TECs exhibited similar distribution and fluorescence intensity. In vivo experiments showed that both groups of TEC could adhere to the defect sites and kept hyaline cartilage morphology until 12 weeks. TEC treated with ascorbic acid showed superior cartilage regeneration as evidenced by significantly higher ICRS and O'Driscoll scores and stronger Safranin-O and collagen staining mimicking native cartilage when compared to other groups. In addition, the immunohistochemical staining results of Collgan X indicated that, after 12 weeks, the ascorbic acid-treated TEC did not exhibit further hypertrophy upon transplantation into the defect site, but maintained an expression profile similar to untreated TECs, while slightly higher than the sham-operated group. Conclusion: These results suggest that CC-derived scaffold-free TEC presents a promising method for articular cartilage regeneration. Ascorbic acid treatment enhances outcomes by promoting cartilage matrix production. This study provides valuable insights and potential advancements in the field of cartilage tissue engineering. The translational potential of this article: Cartilage tissue engineering is an area of research with immense clinical potential. The approach presented in this article offers a cost-effective and straightforward solution, which can minimize the complexity of cell culture and scaffold fabrication. This simplification could offer several translational advantages, such as ease of use, rapid scalability, lower costs, and the potential for patient-specific clinical translation. The use of costal chondrocytes, which are easily obtainable, and the scaffold-free approach, which does not require specialized equipment or membranes, could be particularly advantageous in clinical settings, allowing for in situ regeneration of cartilage.

11.
Bioact Mater ; 36: 317-329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38496032

RESUMEN

The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial implants. Layer-by-layer fabrication strategies, such as 3D printing, have emerged as a promising technology replicating the stratified zonal architecture and varying microstructures and mechanical properties. However, the dynamic and circulating physiological environments, such as mass transportation or cell migration, usually distort the pre-confined biological properties in the layered implants, leading to undistinguished spatial variations and subsequently inefficient regenerations. This study introduced a biomimetic calcified interfacial layer into the scaffold as a compact barrier between a cartilage layer and a subchondral bone layer to facilitate osteogenic-chondrogenic repair. The calcified interfacial layer consisting of compact polycaprolactone (PCL), nano-hydroxyapatite, and tasquinimod (TA) can physically and biologically separate the cartilage layer (TA-mixed, chondrocytes-load gelatin methacrylate) from the subchondral bond layer (porous PCL). This introduction preserved the as-designed independent biological environment in each layer for both cartilage and bone regeneration, successfully inhibiting vascular invasion into the cartilage layer and preventing hyaluronic cartilage calcification owing to devascularization of TA. The improved integrative regeneration of cartilage and subchondral bone was validated through gross examination, micro-computed tomography (micro-CT), and histological and immunohistochemical analyses based on an in vivo rat model. Moreover, gene and protein expression studies identified a key role of Caveolin (CAV-1) in promoting angiogenesis through the Wnt/ß-catenin pathway and indicated that TA in the calcified layer blocked angiogenesis by inhibiting CAV-1.

12.
Heliyon ; 10(6): e27634, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533065

RESUMEN

Polycomb group RING finger (PCGF) proteins, a crucial subunits of the Polycomb complex, plays an important role in regulating gene expression, embryonic development, and cell fate determination. In our research, we investigated Pcgf5, one of the six PCGF homologs, and its impact on the differentiation of P19 cells into neural stem cells. Our findings revealed that knockdown of Pcgf5 resulted in a significant decrease in the expression levels of the neuronal markers Sox2, Zfp521, and Pax6, while the expression levels of the pluripotent markers Oct4 and Nanog increased. Conversely, Pcgf5 overexpression upregulated the expression of Sox2 and Pax6, while downregulating the expression of Oct4 and Nanog. Additionally, our analysis revealed that Pcgf5 suppresses Wnt3 expression via the activation of Notch1/Hes1, and ultimately governs the differentiation fate of neural stem cells. To further validate our findings, we conducted in vivo experiments in zebrafish. We found that knockdown of pcgf5a using morpholino resulted in the downregulated expression of neurodevelopmental genes such as sox2, sox3, and foxg1 in zebrafish embryos. Consequently, these changes led to neurodevelopmental defects. In conclusion, our study highlights the important role of Pcgf5 in neural induction and the determination of neural cell fate.

13.
iScience ; 27(4): 109332, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500832

RESUMEN

Identification and differentiation of appropriate indications on hip preserving with bone grafting therapy remains a crucial challenge in the treatment of osteonecrosis of the femoral head (ONFH). A prospective cohort study on bone grafting therapy for ONFH aimed to evaluate hip survival rates, and to establish a risk scoring derived from potential risk factors (multivariable model) for hip preservation. Eight variables were identified to be strongly correlated with a decreased rate of hip survival post-therapy, and a comprehensive risk scoring was developed for predicting hip-preservation outcomes. The C-index stood at 0.72, and the areas under the receiver operating characteristics for the risk score's 5- and 10-year hip failure event predictions were 0.74 and 0.72, respectively. This risk score outperforms conventional methods in forecasting hip preservation. Bone grafting shows sustained benefits in treating ONFH when applied under the right indications. Furthermore, the risk scoring proves valuable as a decision-making tool, facilitating risk stratification for ONFH treatments in future.

14.
Nat Commun ; 15(1): 2529, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514612

RESUMEN

Transcortical vessels (TCVs) provide effective communication between bone marrow vascular system and external circulation. Although osteocytes are in close contact with them, it is not clear whether osteocytes regulate the homeostasis of TCVs. Here, we show that osteocytes maintain the normal network of TCVs by transferring mitochondria to the endothelial cells of TCV. Partial ablation of osteocytes causes TCV regression. Inhibition of mitochondrial transfer by conditional knockout of Rhot1 in osteocytes also leads to regression of the TCV network. By contrast, acquisition of osteocyte mitochondria by endothelial cells efficiently restores endothelial dysfunction. Administration of osteocyte mitochondria resultes in acceleration of the angiogenesis and healing of the cortical bone defect. Our results provide new insights into osteocyte-TCV interactions and inspire the potential application of mitochondrial therapy for bone-related diseases.


Asunto(s)
Angiogénesis , Osteocitos , Osteocitos/metabolismo , Células Endoteliales , Huesos , Mitocondrias
15.
Biochem Biophys Res Commun ; 703: 149662, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38359613

RESUMEN

RNA interference (RNAi) is becoming medicine for curing human diseases. Still, we lack a thorough understanding of some fundamental aspects of RNAi that affect its efficiency and accuracy. One such question is how RNA-induced silencing complex (RISC) can efficiently find its targets. To address this question, we developed a strategy that involves the expression of mRNAs containing concatenations of identical miRNA/siRNA target sites. These mRNAs were cleaved by co-expressed miRNAs in plant cells or by co-transfected siRNAs in mammalian cells. The mRNA cleavage events were then detected using the 5'RACE assay. Using this strategy, we found that RISCs preferentially cleave the upstream ones of concatenated target sites, consistent with a model that RISC scans mRNA in 5'→3' direction to approach its target sites. The stability of the cleaved mRNA fragments correlates with the complementarity between siRNA and its target sequence. When siRNA perfectly complements its target sequence, the cleaved mRNA fragment becomes stable and may be cleaved in a second round. Our findings have practical implications for designing siRNAs with increased efficiency and reduced off-target effects.


Asunto(s)
MicroARNs , Animales , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/metabolismo
16.
Gastroenterology ; 166(5): 772-786.e14, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38272100

RESUMEN

BACKGROUND & AIMS: Gastric carcinogenesis develops within a sequential carcinogenic cascade from precancerous metaplasia to dysplasia and adenocarcinoma, and oncogenic gene activation can drive the process. Metabolic reprogramming is considered a key mechanism for cancer cell growth and proliferation. However, how metabolic changes contribute to the progression of metaplasia to dysplasia remains unclear. We have examined metabolic dynamics during gastric carcinogenesis using a novel mouse model that induces Kras activation in zymogen-secreting chief cells. METHODS: We generated a Gif-rtTA;TetO-Cre;KrasG12D (GCK) mouse model that continuously induces active Kras expression in chief cells after doxycycline treatment. Histologic examination and imaging mass spectrometry were performed in the GCK mouse stomachs at 2 to 14 weeks after doxycycline treatment. Mouse and human gastric organoids were used for metabolic enzyme inhibitor treatment. The GCK mice were treated with a stearoyl- coenzyme A desaturase (SCD) inhibitor to inhibit the fatty acid desaturation. Tissue microarrays were used to assess the SCD expression in human gastrointestinal cancers. RESULTS: The GCK mice developed metaplasia and high-grade dysplasia within 4 months. Metabolic reprogramming from glycolysis to fatty acid metabolism occurred during metaplasia progression to dysplasia. Altered fatty acid desaturation through SCD produces a novel eicosenoic acid, which fuels dysplastic cell hyperproliferation and survival. The SCD inhibitor killed both mouse and human dysplastic organoids and selectively targeted dysplastic cells in vivo. SCD was up-regulated during carcinogenesis in human gastrointestinal cancers. CONCLUSIONS: Active Kras expression only in gastric chief cells drives the full spectrum of gastric carcinogenesis. Also, oncogenic metabolic rewiring is an essential adaptation for high-energy demand in dysplastic cells.


Asunto(s)
Metabolismo Energético , Ácidos Grasos , Metaplasia , Organoides , Proteínas Proto-Oncogénicas p21(ras) , Neoplasias Gástricas , Animales , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Humanos , Ácidos Grasos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Organoides/metabolismo , Ratones , Modelos Animales de Enfermedad , Carcinogénesis/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Células Principales Gástricas/metabolismo , Células Principales Gástricas/patología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/genética , Ratones Transgénicos , Glucólisis , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/genética , Progresión de la Enfermedad , Lesiones Precancerosas/patología , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/genética
17.
Sci Adv ; 10(3): eadi4298, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38232158

RESUMEN

Bone is one of the most common sites of tumor metastases. During the last step of bone metastasis, cancer cells colonize and disrupt the bone matrix, which is maintained mainly by osteocytes, the most abundant cells in the bone microenvironment. However, the role of osteocytes in bone metastasis is still unclear. Here, we demonstrated that osteocytes transfer mitochondria to metastatic cancer cells and trigger the cGAS/STING-mediated antitumor response. Blocking the transfer of mitochondria by specifically knocking out mitochondrial Rho GTPase 1 (Rhot1) or mitochondrial mitofusin 2 (Mfn2) in osteocytes impaired tumor immunogenicity and consequently resulted in the progression of metastatic cancer toward the bone matrix. These findings reveal the protective role of osteocytes against cancer metastasis by transferring mitochondria to cancer cells and potentially offer a valuable therapeutic strategy for preventing bone metastasis.


Asunto(s)
Neoplasias Óseas , Osteocitos , Humanos , Osteocitos/metabolismo , Huesos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Mitocondrias , Microambiente Tumoral
18.
IEEE Trans Image Process ; 33: 1272-1284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285574

RESUMEN

To manipulate large-scale data, anchor-based multi-view clustering methods have grown in popularity owing to their linear complexity in terms of the number of samples. However, these existing approaches pay less attention to two aspects. 1) They target at learning a shared affinity matrix by using the local information from every single view, yet ignoring the global information from all views, which may weaken the ability to capture complementary information. 2) They do not consider the removal of feature redundancy, which may affect the ability to depict the real sample relationships. To this end, we propose a novel fast multi-view clustering method via pick-and-place transform learning named PPTL, which could capture insightful global features to characterize the sample relationships quickly. Specifically, PPTL first concatenates all the views along the feature direction to produce a global matrix. Considering the redundancy of the global matrix, we design a pick-and-place transform with l2,p -norm regularization to abandon the poor features and consequently construct a compact global representation matrix. Thus, by conducting anchor-based subspace clustering on the compact global representation matrix, PPTL can learn a consensus skinny affinity matrix with a discriminative clustering structure. Numerous experiments performed on small-scale to large-scale datasets demonstrate that our method is not only faster but also achieves superior clustering performance over state-of-the-art methods across a majority of the datasets.

19.
Adv Sci (Weinh) ; 11(12): e2307388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233202

RESUMEN

Ferroptosis is a necrotic form of iron-dependent regulatory cell death. Estrogen withdrawal can interfere with iron metabolism, which is responsible for the pathogenesis of postmenopausal osteoporosis (PMOP). Here, it is demonstrated that estrogen withdrawal induces iron accumulation in the skeleton and the ferroptosis of osteocytes, leading to reduced bone mineral density. Furthermore, the facilitatory effect of ferroptosis of osteocytes is verified in the occurrence and development of postmenopausal osteoporosis is associated with over activated osteoclastogenesis using a direct osteocyte/osteoclast coculture system and glutathione peroxidase 4 (GPX4) knockout ovariectomized mice. In addition, the nuclear factor erythroid derived 2-related factor-2 (Nrf2) signaling pathway is confirmed to be a crucial factor in the ferroptosis of osteocytic cells. Nrf2 regulates the expression of nuclear factor kappa-B ligand (RANKL) by regulating the DNA methylation level of the RANKL promoter mediated by DNA methyltransferase 3a (Dnmt3a), which is as an important mechanism in osteocytic ferroptosis-mediated osteoclastogenesis. Taken together, this data suggests that osteocytic ferroptosis is involved in PMOP and can be targeted to tune bone homeostasis.


Asunto(s)
Ferroptosis , Osteoporosis Posmenopáusica , Ratones , Humanos , Animales , Femenino , Osteocitos/metabolismo , Osteoporosis Posmenopáusica/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrógenos/metabolismo , Hierro/metabolismo
20.
Adv Mater ; 36(11): e2308110, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088059

RESUMEN

Biofilm-related infections (BRIs) present significant challenges owing to drug resistance, adverse immune responses, and implant failure; however, current approaches inadequately cater to the diverse therapeutic requirements at different stages of infection. To address this issue, a multi-immunotherapy strategy in combination with sonodynamic therapy is proposed for the chronological treatment of BRIs. Macrophage membrane-decorated targeting sonosensitive nanoadjuvants are fabricated to load cytosine-phosphate-guanine oligodeoxynucleotide (CPG-ODN) or microRNA (miR)-21-5p. In the early stages of BRI (Stage I), CPG-ODN-loaded nanoadjuvants (CPG@HMPN@M) promote the formation of neutrophil extracellular traps to capture and neutralize detached microbes. During the late stage of infection (Stage II), CPG-ODNs redirect macrophage polarization into the M1 phase to combat infections via TLR9/Myd88/TRAF6 pathway. During these stages, CPG@HMPN@M generates singlet oxygen through sonodynamic processes, eradicating the biofilms under US irradiation. Once the BRIs are eliminated, miR-21-5p-loaded nanoadjuvants (miR@HMPN@M) are delivered to the lesions to suppress excessive inflammation and promote tissue integration by evoking macrophage M2 polarization during the repair phase (Stage III) through PTEN/PI3K/Akt pathway. This innovative approach aims to provide comprehensive treatment strategies for the chronological treatment of BRI by effectively eliminating infections, promoting tissue restoration, and implementing different immune regulations at different stages, thus demonstrating promising clinical value.


Asunto(s)
Biomimética , MicroARNs , Fosfatidilinositol 3-Quinasas/metabolismo , Macrófagos/metabolismo , Inmunoterapia , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA