Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
NPJ Digit Med ; 7(1): 231, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227660

RESUMEN

Deep learning for computer vision can be leveraged for interpreting surgical scenes and providing surgeons with real-time guidance to avoid complications. However, neither generalizability nor scalability of computer-vision-based surgical guidance systems have been demonstrated, especially to geographic locations that lack hardware and infrastructure necessary for real-time inference. We propose a new equipment-agnostic framework for real-time use in operating suites. Using laparoscopic cholecystectomy and semantic segmentation models for predicting safe/dangerous ("Go"/"No-Go") zones of dissection as an example use case, this study aimed to develop and test the performance of a novel data pipeline linked to a web-platform that enables real-time deployment from any edge device. To test this infrastructure and demonstrate its scalability and generalizability, lightweight U-Net and SegFormer models were trained on annotated frames from a large and diverse multicenter dataset from 136 institutions, and then tested on a separate prospectively collected dataset. A web-platform was created to enable real-time inference on any surgical video stream, and performance was tested on and optimized for a range of network speeds. The U-Net and SegFormer models respectively achieved mean Dice scores of 57% and 60%, precision 45% and 53%, and recall 82% and 75% for predicting the Go zone, and mean Dice scores of 76% and 76%, precision 68% and 68%, and recall 92% and 92% for predicting the No-Go zone. After optimization of the client-server interaction over the network, we deliver a prediction stream of at least 60 fps and with a maximum round-trip delay of 70 ms for speeds above 8 Mbps. Clinical deployment of machine learning models for surgical guidance is feasible and cost-effective using a generalizable, scalable and equipment-agnostic framework that lacks dependency on hardware with high computing performance or ultra-fast internet connection speed.

2.
J Nanobiotechnology ; 22(1): 267, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764014

RESUMEN

Enhancing immune response activation through the synergy of effective antigen delivery and immune enhancement using natural, biodegradable materials with immune-adjuvant capabilities is challenging. Here, we present NAPSL.p that can activate the Toll-like receptor 4 (TLR4) pathway, an amphiphilic exopolysaccharide, as a potential self-assembly adjuvant delivery platform. Its molecular structure and unique properties exhibited remarkable self-assembly, forming a homogeneous nanovaccine with ovalbumin (OVA) as the model antigen. When used as an adjuvant, NAPSL.p significantly increased OVA uptake by dendritic cells. In vivo imaging revealed prolonged pharmacokinetics of NAPSL. p-delivered OVA compared to OVA alone. Notably, NAPSL.p induced elevated levels of specific serum IgG and isotype titers, enhancing rejection of B16-OVA melanoma xenografts in vaccinated mice. Additionally, NAPSL.p formulation improved therapeutic effects, inhibiting tumor growth, and increasing animal survival rates. The nanovaccine elicited CD4+ and CD8+ T cell-based immune responses, demonstrating the potential for melanoma prevention. Furthermore, NAPSL.p-based vaccination showed stronger protective effects against influenza compared to Al (OH)3 adjuvant. Our findings suggest NAPSL.p as a promising, natural self-adjuvanting delivery platform to enhance vaccine design across applications.


Asunto(s)
Adyuvantes Inmunológicos , Melanoma Experimental , Ratones Endogámicos C57BL , Ovalbúmina , Probióticos , Animales , Ovalbúmina/inmunología , Ovalbúmina/química , Ratones , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Probióticos/farmacología , Melanoma Experimental/inmunología , Femenino , Células Dendríticas/inmunología , Receptor Toll-Like 4/metabolismo , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/química , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Humanos , Nanopartículas/química , Linfocitos T CD4-Positivos/inmunología
3.
Bioresour Technol ; 404: 130909, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815696

RESUMEN

To enhance the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in sediments and to elucidate the mechanisms by which microbial electrochemical action aids in the degradation of PAHs, humic acid was used as an electron mediator in the microbial electrochemical system in this study. The results revealed that the addition of humic acids led to increases in the removal efficiencies of naphthalene, phenanthrene, and pyrene by 45.91%, 97.83%, and 85.56%, respectively, in areas remote from the anode, when compared to the control group. The investigation into the microbial community structure and functional attributes showed that the presence of humic acid did not significantly modify the microbial community composition or its functional expression at the anode. However, an examination of humic acid transformations demonstrated that humic acid extended the electron transfer range in sediment via the redox reactions of quinone and semiquinone groups, thereby facilitating the PAHs degradation within the sediment.


Asunto(s)
Biodegradación Ambiental , Sedimentos Geológicos , Sustancias Húmicas , Hidrocarburos Policíclicos Aromáticos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Electrones , Electrodos , Técnicas Electroquímicas/métodos , Oxidación-Reducción
4.
Opt Express ; 32(6): 10587-10598, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571266

RESUMEN

In the present study, we have devised and conducted an investigation into a real-time tunable notched waveguide, employing a voltage-controllable plasmonic resonator. This plasmonic resonator is meticulously engineered from a ferroelectric substrate featuring a compound multilayer structure, thereby conferring it with the remarkable capability of flexible permittivity control. Furthermore, we have implemented two non-intersecting Archimedean spiral electrodes on the surface of the ferroelectric substrate, dedicated to applying the bias field onto the controllable plasmonic ferroelectric resonator (CPFR). Notably, our system affords the capability to finely tune both the magnetic and electric modes, achieving precise adjustments of 8.7% and 11%, respectively. The performance is complemented by minimal insertion loss, rapid response times, and a broad range of potential applications, positioning it as a candidate for a diverse array of notched waveguide scenarios.

5.
iScience ; 26(12): 108453, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38034361

RESUMEN

Mastitis, a common disease for female during lactation period that could cause a health risk for human or huge economic losses for animals, is mainly caused by S. aureus invasion. Here, we found that neutrophil recruitment via IL-17A-mediated signaling was required for host defense against S. aureus-induced mastitis in a mouse model. The rapid accumulation and activation of Vγ4+ γδ T cells in the early stage of infection triggered the IL-17A-mediated immune response. Interestingly, the accumulation and influence of γδT17 cells in host defense against S. aureus-induced mastitis in a commensal microbiota-dependent manner. Overall, this study, focusing on γδT17 cells, clarified innate immune response mechanisms against S. aureus-induced mastitis, and provided a specific response to target for future immunotherapies. Meanwhile, a link between commensal microbiota community and host defense to S. aureus mammary gland infection may unveil potential therapeutic strategies to combat these intractable infections.

6.
Surg Endosc ; 37(12): 9467-9475, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37697115

RESUMEN

INTRODUCTION: Bile duct injuries (BDIs) are a significant source of morbidity among patients undergoing laparoscopic cholecystectomy (LC). GoNoGoNet is an artificial intelligence (AI) algorithm that has been developed and validated to identify safe ("Go") and dangerous ("No-Go") zones of dissection during LC, with the potential to prevent BDIs through real-time intraoperative decision-support. This study evaluates GoNoGoNet's ability to predict Go/No-Go zones during LCs with BDIs. METHODS AND PROCEDURES: Eleven LC videos with BDI (BDI group) were annotated by GoNoGoNet. All tool-tissue interactions, including the one that caused the BDI, were characterized in relation to the algorithm's predicted location of Go/No-Go zones. These were compared to another 11 LC videos with cholecystitis (control group) deemed to represent "safe cholecystectomy" by experts. The probability threshold of GoNoGoNet annotations were then modulated to determine its relationship to Go/No-Go predictions. Data is shown as % difference [99% confidence interval]. RESULTS: Compared to control, the BDI group showed significantly greater proportion of sharp dissection (+ 23.5% [20.0-27.0]), blunt dissection (+ 32.1% [27.2-37.0]), and total interactions (+ 33.6% [31.0-36.2]) outside of the Go zone. Among injury-causing interactions, 4 (36%) were in the No-Go zone, 2 (18%) were in the Go zone, and 5 (45%) were outside both zones, after maximizing the probability threshold of the Go algorithm. CONCLUSION: AI has potential to detect unsafe dissection and prevent BDIs through real-time intraoperative decision-support. More work is needed to determine how to optimize integration of this technology into the operating room workflow and adoption by end-users.


Asunto(s)
Enfermedades de los Conductos Biliares , Colecistectomía Laparoscópica , Humanos , Colecistectomía Laparoscópica/métodos , Conductos Biliares/lesiones , Inteligencia Artificial , Colecistectomía/métodos , Enfermedades de los Conductos Biliares/cirugía , Asunción de Riesgos
7.
Surg Endosc ; 37(12): 9453-9460, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37697116

RESUMEN

INTRODUCTION: Surgical complications often occur due to lapses in judgment and decision-making. Advances in artificial intelligence (AI) have made it possible to train algorithms that identify anatomy and interpret the surgical field. These algorithms can potentially be used for intraoperative decision-support and postoperative video analysis and feedback. Despite the very early success of proof-of-concept algorithms, it remains unknown whether this innovation meets the needs of end-users or how best to deploy it. This study explores users' opinion on the value, usability and design for adapting AI in operating rooms. METHODS: A device-agnostic web-accessible software was developed to provide AI inference either (1) intraoperatively on a live video stream (synchronous mode), or (2) on an uploaded video or image file (asynchronous mode) postoperatively for feedback. A validated AI model (GoNoGoNet), which identifies safe and dangerous zones of dissection during laparoscopic cholecystectomy, was used as the use case. Surgeons and trainees performing laparoscopic cholecystectomy interacted with the AI platform and completed a 5-point Likert scale survey to evaluate the educational value, usability and design of the platform. RESULTS: Twenty participants (11 surgeons and 9 trainees) evaluated the platform intraoperatively (n = 10) and postoperatively (n = 11). The majority agreed or strongly agreed that AI is an effective adjunct to surgical training (81%; neutral = 10%), effective for providing real-time feedback (70%; neutral = 20%), postoperative feedback (73%; neutral = 27%), and capable of improving surgeon confidence (67%; neutral = 29%). Only 40% (neutral = 50%) and 57% (neutral = 43%) believe that the tool is effective in improving intraoperative decisions and performance, or beneficial for patient care, respectively. Overall, 38% (neutral = 43%) reported they would use this platform consistently if available. The majority agreed or strongly agreed that the platform was easy to use (81%; neutral = 14%) and has acceptable resolution (62%; neutral = 24%), while 30% (neutral = 20%) reported that it disrupted the OR workflow, and 20% (neutral = 0%) reported significant time lag. All respondents reported that such a system should be available "on-demand" to turn on/off at their discretion. CONCLUSIONS: Most found AI to be a useful tool for providing support and feedback to surgeons, despite several implementation obstacles. The study findings will inform the future design and usability of this technology in order to optimize its clinical impact and adoption by end-users.


Asunto(s)
Inteligencia Artificial , Cirujanos , Humanos , Escolaridad , Algoritmos , Programas Informáticos
8.
Microbiol Spectr ; : e0367322, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36723073

RESUMEN

Staphylococcus aureus is a Gram-positive bacterium responsible for most hospital-acquired (nosocomial) and community-acquired infections worldwide. The only therapeutic strategy against S. aureus-induced infections, to date, is antibiotic treatment. A protective vaccine is urgently needed in view of the emergence of antibiotic-resistant strains associated with high-mortality cases; however, no such vaccine is currently available. In our previous work, the feasibility of implementing a Lactobacillus delivery system for development of S. aureus oral vaccine was first discussed. Here, we describe systematic screening and evaluation of protective effects of engineered Lactobacillus against S. aureus infection in terms of different delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Limosilactobacillus reuteri WXD171 was selected as the delivery vehicle strain based on its tolerance of the gastrointestinal environment, adhesion ability, and antimicrobial activities in vitro and in vivo. We designed, constructed, and evaluated engineered L. reuteri strains expressing various S. aureus antigens. Among these, engineered L. reuteri WXD171-IsdB displayed effective protection against S. aureus-induced localized infection (pneumonia and skin infection) and, furthermore, a substantial survival benefit in systemic infection (sepsis). WXD171-IsdB induced mucosal responses in gut-associated lymphoid tissues, as evidenced by increased production of secretory IgA and interleukin 17A (IL-17A) and proliferation of lymphocytes derived from Peyer's patches. The probiotic L. reuteri-based oral vaccine appears to have strong potential as a prophylactic agent against S. aureus infections. Our findings regarding utilization of Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development. IMPORTANCE We systematically screened and evaluated protective effects of engineered Lactobacillus against S. aureus infection in terms of differing delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Engineered L. reuteri was developed and showed strong protective effects against both types of S. aureus-induced infection. Our findings regarding the utilization of a Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development.

9.
Front Microbiol ; 13: 1015270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225355

RESUMEN

Probiotics are gaining attention due to their functions of regulating the intestinal barrier and promoting human health. The production of exopolysaccharide (EPS) is one of the important factors for probiotics to exert beneficial properties. This study aimed to screen exopolysaccharides-producing lactic acid bacteria (LAB) and evaluate the probiotic potential. we obtained three exopolysaccharide fractions (EPS1, EPS2, and EPS3) from Lactobacillus pantheris TCP102 and purified by a combination of ion-exchange chromatography and gel permeation chromatography. The structures of the fractions were characterized by FT-IR, UV, HPLC, and scanning electron microscopy (SEM) analysis. The Mw of EPS1, EPS2, and EPS3 were approximately 20.3, 23.0, and 19.3 kDa, and were mainly composed of galactose, glucose, and mannose, with approximate molar ratios of 2.86:1:1.48, 1.26:1:1, 1.58:1.80:1, respectively. Furthermore, SEM analysis demonstrated that the three polysaccharide fractions differ in microstructure and surface morphology. Additionally, preliminary results for immune-enhancing and anticancer activities reveal that these EPSs significantly induced the production of nitric oxide (NO), TNF-α, and IL-6 in Ana-1 cells and peritoneal macrophage cells. Meanwhile, the EPSs also significantly suppressed the proliferation of HCT-116, BCG-803, and particularly A-2780 cells. The results suggest that the three novel EPSs isolated from Lactobacillus pantheris TCP102 can be regarded as potential application value in functional food and natural antitumor drugs.

10.
Vaccines (Basel) ; 10(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35891237

RESUMEN

Abscess formation is one of the main symptoms of Staphylococcus aureus infection. It is very important to inhibit abscess formation for preventing S. aureus persistent infection. To find a feasible solution, the live oral vaccines delivering S. aureus antigens, rEsxAB and rHlam, were constructed, which were based on the attenuated regulated delayed lysis Salmonella enterica subspecies Serovar Typhimurium strain χ11802, and the inhibiting effect on abscess formation was evaluated in mice kidneys. As the results showed, after oral administration, humoral immunity was induced via the mucosal route as the antigen-specific IgG in the serum and IgA in the intestinal mucus both showed significant increases. Meanwhile, the production of IFN-γ and IL-17 in the kidney tissue suggested that Th1/Th17-biased cellular immunity played a role in varying degrees. After challenged intravenously (i.v.) with S. aureus USA300, the χ11802(pYA3681-esxAB)-vaccinated group showed obvious inhibition in kidney abscess formation among the vaccinated group, as the kidney abscess incidence rate and the staphylococcal load significantly reduced, and the kidney pathological injury was improved significantly. In conclusion, this study provided experimental data and showed great potential for live oral vaccine development with the attenuated regulated delayed lysis Salmonella Typhimurium strains against S. aureus infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA