Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(26): e2318570121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38905238

RESUMEN

Hydrogen isotope ratios (δ2H) represent an important natural tracer of metabolic processes, but quantitative models of processes controlling H-fractionation in aquatic photosynthetic organisms are lacking. Here, we elucidate the underlying physiological controls of 2H/1H fractionation in algal lipids by systematically manipulating temperature, light, and CO2(aq) in continuous cultures of the haptophyte Gephyrocapsa oceanica. We analyze the hydrogen isotope fractionation in alkenones (αalkenone), a class of acyl lipids specific to this species and other haptophyte algae. We find a strong decrease in the αalkenone with increasing CO2(aq) and confirm αalkenone correlates with temperature and light. Based on the known biosynthesis pathways, we develop a cellular model of the δ2H of algal acyl lipids to evaluate processes contributing to these controls on fractionation. Simulations show that longer residence times of NADPH in the chloroplast favor a greater exchange of NADPH with 2H-richer intracellular water, increasing αalkenone. Higher chloroplast CO2(aq) and temperature shorten NADPH residence time by enhancing the carbon fixation and lipid synthesis rates. The inverse correlation of αalkenone to CO2(aq) in our cultures suggests that carbon concentrating mechanisms (CCM) do not achieve a constant saturation of CO2 at the Rubisco site, but rather that chloroplast CO2 varies with external CO2(aq). The pervasive inverse correlation of αalkenone with CO2(aq) in the modern and preindustrial ocean also suggests that natural populations may not attain a constant saturation of Rubisco with the CCM. Rather than reconstructing growth water, αalkenone may be a powerful tool to elucidate the carbon limitation of photosynthesis.


Asunto(s)
Dióxido de Carbono , Haptophyta , Lípidos , Fotosíntesis , Dióxido de Carbono/metabolismo , Haptophyta/metabolismo , Lípidos/química , Hidrógeno/metabolismo , Cloroplastos/metabolismo , Deuterio/metabolismo , NADP/metabolismo , Temperatura , Fraccionamiento Químico/métodos , Metabolismo de los Lípidos
2.
Plant Signal Behav ; 19(1): 2371694, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38916149

RESUMEN

MYB transcription factor is one of the largest families in plants. There are more and more studies on plants responding to abiotic stress through MYB transcription factors, but the mechanism of some family members responding to salt stress is unclear. In this study, physiological and transcriptome techniques were used to analyze the effects of the R2R3-MYB transcription factor AtMYB72 on the growth and development, physiological function, and key gene response of Arabidopsis thaliana. Phenotypic observation showed that the damage of overexpression strain was more serious than that of Col-0 after salt treatment, while the mutant strain showed less salt injury symptoms. Under salt stress, the decrease of chlorophyll content, the degree of photoinhibition of photosystem II (PSII) and photosystem I (PSI) and the degree of oxidative damage of overexpressed lines were significantly higher than those of Col-0. Transcriptome data showed that the number of differentially expressed genes (DEGs) induced by salt stress in overexpressed lines was significantly higher than that in Col-0. GO enrichment analysis showed that the response of AtMYB72 to salt stress was mainly by affecting gene expression in cell wall ectoplast, photosystem I and photosystem II, and other biological processes related to photosynthesis. Compared with Col-0, the overexpression of AtMYB72 under salt stress further inhibited the synthesis of chlorophyll a (Chla) and down-regulated most of the genes related to photosynthesis, which made the photosynthetic system more sensitive to salt stress. AtMYB72 also caused the outbreak of reactive oxygen species and the accumulation of malondialdehyde under salt stress, which decreased the activity and gene expression of key enzymes in SOD, POD, and AsA-GSH cycle, thus destroying the ability of antioxidant system to maintain redox balance. AtMYB72 negatively regulates the accumulation of osmotic regulatory substances such as soluble sugar (SS) and soluble protein (SP) in A. thaliana leaves under salt stress, which enhances the sensitivity of Arabidopsis leaves to salt. To sum up, MYB72 negatively regulates the salt tolerance of A. thaliana by destroying the light energy capture, electron transport, and antioxidant capacity of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo , Fotosíntesis , Hojas de la Planta , Estrés Salino , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Arabidopsis/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estrés Salino/genética , Estrés Oxidativo/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/metabolismo
3.
Expert Opin Drug Saf ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38898801

RESUMEN

BACKGROUND: Lasmiditan offers a promising option for the treatment of migraines, particularly for individuals with cardiovascular concerns. It is crucial to gather comprehensive safety information of lasmiditan through large-scale post market monitoring. RESEARCH DESIGN AND METHODS: This study assessed the safety profile of lasmiditan based on real-world data of FDA Adverse Event Reporting System (FAERS) database. Four disproportionality analysis methods were applied to mining the significant signals. The differences in adverse event signals among different subgroups were investigated concerning race, sex, age, weight, dose, and concomitant drug. RESULTS: A total of 820 reports and 1,661 adverse events with lasmiditan as the primary suspected drug were identified. Two new adverse event signals related to nervous system disorders emerged. Females and males were more likely to develop paresthesia and dizziness, respectively. Most common adverse events were more likely to occur in the elderly patients and at high doses. CONCLUSIONS: It is essential to be vigilant about the relation of potential nervous system disorders with lasmiditan. The importance of heightened clinical vigilance regarding paresthesia in females and dizziness in males was underscored. Additionally, it is advised to administer a lower initial dose for elderly patients.

4.
Sci Total Environ ; 938: 173385, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38796010

RESUMEN

Internalization of chemicals and the forage risks of ryegrass under the combined exposure to PAHs and Cd at environmental concentrations were studied here. The effect of soil pH was also concerned due to the widely occurred soil acidification and general alkali remediation for acidification soil. Unexpectedly, as same as the acid-treated group (pH 6.77), the alkali-treatment (pH 8.83) increased Cd uptake compared with original soil pH group (pH 7.92) for the reason of CdOH+ and CdHCO3+ formed in alkali-treated group. Co-exposure to PAHs induced more oxidative stress than Cd exposure alone due to PAHs aggregated in young root regions, such as root tips, and consequently, affecting the expression of Cd-transporters, destroying the basic structure of plant cells, inhibiting the energy supply for the transporters, even triggering programmed cell death, and finally resulting in decreased Cd uptake. Even under environmental concentrations, combined exposure caused potential risks derived from both PAHs and Cd. Especially, ryegrass grown in alkali-treated soil experienced an increased forage risks despite the soil meeting the national standards for Cd at safe levels. These comprehensive results reveal the mechanism of PAHs inhibiting Cd uptake, improve the understanding of bioavailability of Cd based on different forms, provide a theoretical basis to formulate the safety criteria, and guide the application of actual soil management.


Asunto(s)
Cadmio , Lolium , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo , Lolium/efectos de los fármacos , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Suelo/química , Medición de Riesgo
5.
Nat Mater ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783106

RESUMEN

Thin-film materials with large electromechanical responses are fundamental enablers of next-generation micro-/nano-electromechanical applications. Conventional electromechanical materials (for example, ferroelectrics and relaxors), however, exhibit severely degraded responses when scaled down to submicrometre-thick films due to substrate constraints (clamping). This limitation is overcome, and substantial electromechanical responses in antiferroelectric thin films are achieved through an unconventional coupling of the field-induced antiferroelectric-to-ferroelectric phase transition and the substrate constraints. A detilting of the oxygen octahedra and lattice-volume expansion in all dimensions are observed commensurate with the phase transition using operando electron microscopy, such that the in-plane clamping further enhances the out-of-plane expansion, as rationalized using first-principles calculations. In turn, a non-traditional thickness scaling is realized wherein an electromechanical strain (1.7%) is produced from a model antiferroelectric PbZrO3 film that is just 100 nm thick. The high performance and understanding of the mechanism provide a promising pathway to develop high-performance micro-/nano-electromechanical systems.

6.
Nat Commun ; 15(1): 3828, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714653

RESUMEN

Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.

7.
Animals (Basel) ; 14(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791715

RESUMEN

The gut microbiota plays a crucial role in the host's metabolic processes. Many studies have shown significant changes in the gut microbiota of mammals during hibernation to adapt to the changes in the external environment, but there is limited research on the colonic epithelial tissue and gut microbiota of the wild chipmunks during hibernation. This study analyzed the diversity, composition, and function of the gut microbiota of the wild chipmunk during hibernation using 16S rRNA gene high-throughput sequencing technology, and further conducted histological analysis of the colon. Histological analysis of the colon showed an increase in goblet cells in the hibernation group, which was an adaptive change to long-term fasting during hibernation. The dominant gut microbial phyla were Bacteroidetes, Firmicutes, and Proteobacteria, and the relative abundance of them changed significantly. The analysis of gut microbiota structural differences indicated that the relative abundance of Helicobacter typhlonius and Mucispirillum schaedleri increased significantly, while unclassified Prevotella-9, unclassified Prevotellaceae-UCG-001, unclassified Prevotellaceae-UCG-003 and other species of Prevotella decreased significantly at the species level. Alpha diversity analysis showed that hibernation increased the diversity and richness of the gut microbiota. Beta diversity analysis revealed significant differences in gut microbiota diversity between the hibernation group and the control group. PICRUSt2 functional prediction analysis of the gut microbiota showed that 15 pathways, such as lipid metabolism, xenobiotics biodegradation and metabolism, amino acid metabolism, environmental adaptation, and neurodegenerative diseases, were significantly enriched in the hibernation group, while 12 pathways, including carbohydrate metabolism, replication and repair, translation, and transcription, were significantly enriched in the control group. It can be seen that during hibernation, the gut microbiota of the wild chipmunk changes towards taxa that are beneficial for reducing carbohydrate consumption, increasing fat consumption, and adapting more strongly to environmental changes in order to better provide energy for the body and ensure normal life activities during hibernation.

8.
Signal Transduct Target Ther ; 9(1): 130, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816371

RESUMEN

The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.


Asunto(s)
Enfermedades Cardiovasculares , Macrófagos , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/metabolismo , Fibrosis/genética , Inflamación/genética , Inflamación/patología , Inflamación/inmunología , Animales
9.
Nat Commun ; 15(1): 3869, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719933

RESUMEN

Solving ill-posed inverse problems typically requires regularization based on prior knowledge. To date, only prior knowledge that is formulated mathematically (e.g., sparsity of the unknown) or implicitly learned from quantitative data can be used for regularization. Thereby, semantically formulated prior knowledge derived from human reasoning and recognition is excluded. Here, we introduce and demonstrate the concept of semantic regularization based on a pre-trained large language model to overcome this vexing limitation. We study the approach, first, numerically in a prototypical 2D inverse scattering problem, and, second, experimentally in 3D and 4D compressive microwave imaging problems based on programmable metasurfaces. We highlight that semantic regularization enables new forms of highly-sought privacy protection for applications like smart homes, touchless human-machine interaction and security screening: selected subjects in the scene can be concealed, or their actions and postures can be altered in the reconstruction by manipulating the semantic prior with suitable language-based control commands.

10.
Nat Mater ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622325

RESUMEN

A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO3 and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin-torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO3, an all-oxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.

11.
Nat Commun ; 15(1): 2903, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575570

RESUMEN

Bismuth ferrite (BiFeO3) is a multiferroic material that exhibits both ferroelectricity and canted antiferromagnetism at room temperature, making it a unique candidate in the development of electric-field controllable magnetic devices. The magnetic moments in BiFeO3 are arranged into a spin cycloid, resulting in unique magnetic properties which are tied to the ferroelectric order. Previous understanding of this coupling has relied on average, mesoscale measurements. Using nitrogen vacancy-based diamond magnetometry, we observe the magnetic spin cycloid structure of BiFeO3 in real space. This structure is magnetoelectrically coupled through symmetry to the ferroelectric polarization and this relationship is maintained through electric field switching. Through a combination of in-plane and out-of-plane electrical switching, coupled with ab initio studies, we have discovered that the epitaxy from the substrate imposes a magnetoelastic anisotropy on the spin cycloid, which establishes preferred cycloid propagation directions. The energy landscape of the cycloid is shaped by both the ferroelectric degree of freedom and strain-induced anisotropy, restricting the spin spiral propagation vector to changes to specific switching events.

12.
Adv Healthc Mater ; : e2400346, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684106

RESUMEN

The management of infected bone defects poses a significant clinical challenge, and current treatment modalities exhibit various limitations. This study focuses on the development of a multifunctional composite scaffold comprising nanohydroxyapatite/polyethyleneglycol diacrylate matrix, silver nanoparticles, graphene oxide (GO), sodium alginate, and M2-type macrophage membrane vesicles (MVs) to enhance the healing of infected bone defects. The composite scaffold demonstrates several key features: first, it releases sufficient quantities of silver ions to effectively eliminate bacteria; second, the controlled release of MVs leads to a notable increase in M2-type macrophages, thereby significantly mitigating the inflammatory response. Additionally, GO acts synergistically with nanohydroxyapatite to enhance osteoinductive activity, thereby fostering bone regeneration. Through meticulous in vitro and in vivo investigations, the composite scaffold exhibits broad-spectrum antimicrobial effects, robust immunomodulatory capabilities, and enhanced osteoinductive activity. This multifaceted composite scaffold presents a promising approach for the sequential treatment of infected bone defects, addressing the antimicrobial, immunomodulatory, and osteogenic aspects. This study introduces innovative perspectives and offers new and effective treatment alternatives for managing infected bone defects.

13.
Arch Insect Biochem Physiol ; 115(4): e22113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628056

RESUMEN

The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1-6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Interferencia de ARN , ARN Bicatenario , Insectos/genética , Silenciador del Gen
14.
Oncol Lett ; 27(5): 203, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38516684

RESUMEN

The 5-year survival rate of patients with advanced non-small cell lung cancer (NSCLC) remains low, despite recent advances in targeted therapy and immunotherapy. Therefore, there is a need to identify alternative strategies to improve treatment outcomes. Modern diagnostics can significantly facilitate the selection of treatment plans to improve patient outcomes. In the present study, multi-form diagnostic methodologies were adopted, including next-generation sequencing-based actionable gene sequencing, programmed death ligand 1 (PD-L1) immunohistochemistry, a circulating tumor cell (CTC) assay, flow cytometric analysis of lymphocyte subsets and computed tomography, to improve disease management in an 86-year-old female patient with relapsed metastatic NSCLC. High expression of PD-L1, elevated CTC tmutations, were observed. Based on these results, the patient was initially treated with the programmed death protein 1 blocking antibody sintilimab for two cycles, resulting in the stabilization of their condition, although the patient still exhibited severe pain and other symptoms, including fatigue, malaise, a loss of appetite and poor mental state. Informed by dynamic monitoring of the patient's response to treatment, the treatment plan was subsequently adjusted to a combination therapy with sintilimab and autologous cytokine-induced killer cell infusion, which eventually led to improved outcomes in both the management of the cancer and quality of life. In conclusion, multi-omics analysis may be used to establish patient-tailored therapies to improve clinical outcomes in hard-to-treat elderly patients with metastatic NSCLC.

15.
Zootaxa ; 5419(3): 419-429, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38480316

RESUMEN

The genus Oxyartes currently comprises 17 taxa, of which 12 are found in China, representing the high diversity in China. This list includes the two species from China as described in this paper. The first is a new remarkable species O. bouxraeuz sp. nov. collected from Gulinqing township, Yunnan. The second is a newly recorded species, O. cresphontes. This species is reported from Mdog, Xizang, China. A key to this genus from China is presented. Type specimens are deposited in the Yunnan Agricultural University (YNAU).


Asunto(s)
Neoptera , Humanos , Animales , China , Universidades
16.
Bioact Mater ; 36: 62-82, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38440323

RESUMEN

Tendon-bone interface injuries pose a significant challenge in tissue regeneration, necessitating innovative approaches. Hydrogels with integrated supportive features and controlled release of therapeutic agents have emerged as promising candidates for the treatment of such injuries. In this study, we aimed to develop a temperature-sensitive composite hydrogel capable of providing sustained release of magnesium ions (Mg2+). We synthesized magnesium-Procyanidin coordinated metal polyphenol nanoparticles (Mg-PC) through a self-assembly process and integrated them into a two-component hydrogel. The hydrogel was composed of dopamine-modified hyaluronic acid (Dop-HA) and F127. To ensure controlled release and mitigate the "burst release" effect of Mg2+, we covalently crosslinked the Mg-PC nanoparticles through coordination bonds with the catechol moiety within the hydrogel. This crosslinking strategy extended the release window of Mg2+ concentrations for up to 56 days. The resulting hydrogel (Mg-PC@Dop-HA/F127) exhibited favorable properties, including injectability, thermosensitivity and shape adaptability, making it suitable for injection and adaptation to irregularly shaped supraspinatus implantation sites. Furthermore, the hydrogel sustained the release of Mg2+ and Procyanidins, which attracted mesenchymal stem and progenitor cells, alleviated inflammation, and promoted macrophage polarization towards the M2 phenotype. Additionally, it enhanced collagen synthesis and mineralization, facilitating the repair of the tendon-bone interface. By incorporating multilevel metal phenolic networks (MPN) to control ion release, these hybridized hydrogels can be customized for various biomedical applications.

17.
Adv Sci (Weinh) ; 11(17): e2309826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380552

RESUMEN

Speech recognition becomes increasingly important in the modern society, especially for human-machine interactions, but its deployment is still severely thwarted by the struggle of machines to recognize voiced commands in challenging real-life settings: oftentimes, ambient noise drowns the acoustic sound signals, and walls, face masks or other obstacles hide the mouth motion from optical sensors. To address these formidable challenges, an experimental prototype of a microwave speech recognizer empowered by programmable metasurface is presented here that can remotely recognize human voice commands and speaker identities even in noisy environments and if the speaker's mouth is hidden behind a wall or face mask. The programmable metasurface is the pivotal hardware ingredient of the system because its large aperture and huge number of degrees of freedom allows the system to perform a complex sequence of sensing tasks, orchestrated by artificial-intelligence tools. Relying solely on microwave data, the system avoids visual privacy infringements. The developed microwave speech recognizer can enable privacy-respecting voice-commanded human-machine interactions is experimentally demonstrated in many important but to-date inaccessible application scenarios. The presented strategy will unlock new possibilities and have expectations for future smart homes, ambient-assisted health monitoring, as well as intelligent surveillance and security.


Asunto(s)
Microondas , Software de Reconocimiento del Habla , Humanos
18.
Adv Mater ; 36(9): e2308555, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38016700

RESUMEN

2D layered materials with broken inversion symmetry are being extensively pursued as  spin source layers to realize high-efficiency magnetic switching. Such low-symmetry layered systems are, however, scarce. In addition, most layered magnets with perpendicular magnetic anisotropy show a low Curie temperature. Here, the experimental observation of spin-orbit torque magnetization self-switching at room temperature in a layered polar ferromagnetic metal, Fe2.5 Co2.5 GeTe2 is reported. The spin-orbit torque is generated from the broken inversion symmetry along the c-axis of the crystal. These results provide a direct pathway toward applicable 2D spintronic devices.

19.
Environ Sci Technol ; 58(1): 291-301, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38126320

RESUMEN

With the prevalence of allergic contact dermatitis (ACD) from the usage of skin-contact products, like wearable, skin care, and hair care products, screening their skin sensitizing potential is necessary, for the sake of alleviating the consequent public health impact. In the present study, a total of 77 skin-contact products classified by four categories, watch bands (WBs), skin care products (SCPs), hair care products (HCPs), and rubber gloves (RGs), were investigated, using an optimized in vitro assay of human cell line activation test (h-CLAT). Extracting the products using neutral artificial sweat simulated well the practical usage scenarios, and testing the extracts showed that 26 of them were allergy test positive, including nine WBs, six SCPs, two HCPs, and nine RGs. The allergenic response was mainly characterized by the induction of CD54 expression, and diverse paradigms of CD54 and CD86 levels were observed by analyzing dose-response curves, which could also be influenced by the compromised viability of the THP-1 cells. The data implicated the intricate regulation by different contributors to suspicious ingredients in the test samples. Altogether, a promising methodology for testing skin allergy potential was well established for commonly used commodities by neutral artificial sweat extraction coupled with h-CLAT screening. The findings would be of great help in tracing the potential allergens in practical products and improving their qualities.


Asunto(s)
Preparaciones para el Cabello , Hipersensibilidad , Humanos , Alérgenos/farmacología , Células THP-1 , Piel
20.
BMC Pediatr ; 23(1): 571, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974127

RESUMEN

BACKGROUND: Whether cesarean section (CS) is a risk factor for asthma in offspring is controversial. The purpose of this study was to investigate the association between CS and asthma in children/adolescents. METHODS: Pubmed, Embase, Web of Science, and Cochrane Library electronic databases were searched for cohort studies on the relationship between mode of delivery and asthma in children/adolescents up to February 2023. Birth via CS was considered an exposure factor. Asthma incidence was taken as a result. RESULTS: Thirty-five cohort studies (thirteen prospective and twenty-two retrospective cohort studies) were included. The results showed that the incidence of asthma was higher in CS offspring (odds ratio (OR) = 1.18, P < 0.001) than in the vaginal delivery (VD) group. Partial subgroup analyses showed a higher incidence of asthma in female offspring born via CS (OR = 1.26, P < 0.001) compared with the VD group, while there was no difference in males (OR = 1.07, P = 0.325). Asthma incidence was higher in CS offspring than in the VD group in Europe (OR = 1.20, P < 0.001), North America (OR = 1.15, P < 0.001), and Oceania (OR = 1.06, P = 0.008). This trend was not found in the Asian population (OR = 1.17, P = 0.102). The incidence of atopic asthma was higher in offspring born via CS (OR = 1.14, P < 0.001) compared to the VD group. The CS group had a higher incidence of persistent asthma, but the difference did not reach statistical significance (OR = 1.15, P = 0.063). CONCLUSION: In this meta-analysis, CS may be a risk factor for asthma in offspring children/adolescents compared with VD. The relationship between CS and asthma was influenced by sex and region.


Asunto(s)
Asma , Cesárea , Masculino , Niño , Femenino , Adolescente , Humanos , Embarazo , Cesárea/efectos adversos , Estudios Retrospectivos , Estudios Prospectivos , Estudios de Cohortes , Asma/epidemiología , Asma/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA