Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Total Environ ; 926: 171878, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38537832

RESUMEN

Microplastics (MPs) and heavy metals often coexist in soil, drawing significant attention to their interactions and the potential risks of biological accumulation in the soil-plant system. This paper comprehensively reviews the factors and biochemical mechanisms that influence the uptake of heavy metals by plants, in the existence of MPs, spanning from rhizospheric soil to the processes of root absorption and transport. The paper begins by introducing the origins and current situation of soil contamination with both heavy metals and MPs. It then discusses how MPs alter the physicochemical properties of rhizospheric soil, with a focus on parameters that affect the bioavailability of heavy metals such as aggregates, pH, Eh, and soil organic carbon (SOC). The paper also examines the effect of this pollution on soil organisms and plant growth and reviews the mechanisms by which MPs affect the bioavailability and movement-transformation of heavy metals in rhizospheric soil. This examination emphasizes the roles of rhizospheric microbes, soil fauna, and root physiological metabolism. Finally, the paper outlines the research progress on the mechanisms by which MPs influence the uptake and transport of heavy metals by plant roots. Through this comprehensive review, this paper provides aims to provide environmental managers with a detailed understanding of the potential impact of the coexistence of MPs and heavy metals on the soil-plant ecosystem.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Microplásticos , Plásticos , Ecosistema , Carbono , Metales Pesados/análisis , Plantas/metabolismo , Contaminantes del Suelo/análisis
2.
Rheumatol Ther ; 11(1): 79-96, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37980696

RESUMEN

INTRODUCTION: Current therapies for autoimmune rheumatic diseases (ARDs) have limited efficacy in certain patients, highlighting the need for the development of novel treatment approaches. This meta-analysis aims to assess the efficacy and safety of low-dose interleukin-2 (LD-IL-2) and evaluate the alterations in lymphocyte subsets in various rheumatic diseases following administration of different dosages of LD-IL-2. METHODS: A comprehensive search was conducted in PubMed, Web of Science, the Cochrane Library, Embase databases and CNKI to identify relevant studies. A total of 31 trials were included in this meta-analysis. The review protocols were registered on PROSPERO (CRD42022318916), and the study followed the PRISMA guidelines. RESULTS: Following LD-IL-2 treatment, patients with ARDs exhibited a significant increase in the number of Th17 cells and Tregs compared to their pre-treatment levels [standardized mean difference (SMD) = 0.50, 95% confidence interval (CI) (0.33, 0.67), P < 0.001; SMD = 1.13, 95% CI (0.97, 1.29), P < 0.001]. Moreover, the Th17/Tregs ratio showed a significant decrease [SMD = - 0.54, 95% CI (- 0.64, - 0.45), P < 0.001]. In patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), LD-IL-2 injection led to a significant increase in Treg numbers, and the Th17/Tregs ratio and disease activity scores, including Disease Activity Score-28 joints (DAS28), Systemic Lupus Erythematosus Disease Activity Index (SELENA-SLEDAI) and Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI), were all significantly reduced. No serious adverse events were reported in any of the included studies. Additionally, 54.8% of patients with lupus nephritis achieved distinct clinical remission following LD-IL-2 treatment. Injection site reactions and fever were the most common side effects of LD-IL-2, occurring in 33.1% and 14.4% of patients, respectively. CONCLUSION: LD-IL-2 treatment showed promise and was well tolerated in the management of ARDs, as it effectively promoted the proliferation and functional recovery of Tregs. TRIAL REGISTRATION: Retrospectively registered (CRD42022318916, 21/04/2022).

3.
Environ Res ; 245: 118054, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157968

RESUMEN

Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Cadmio/toxicidad , Cadmio/análisis , Suelo/química , Rizosfera , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis , Productos Agrícolas/metabolismo , Metales Pesados/análisis
4.
Front Pharmacol ; 14: 1293130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044941

RESUMEN

Cancer poses a substantial risk to human life and wellbeing as a result of its elevated incidence and fatality rates. Endoplasmic reticulum stress (ERS) is an important pathway that regulates cellular homeostasis. When ERS is under- or overexpressed, it activates the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-, inositol-requiring enzyme 1 (IRE1)- and activating transcription Factor 6 (ATF6)-related apoptotic pathways to induce apoptosis. Tumor cells and microenvironment are susceptible to ERS, making the modulation of ERS a potential therapeutic approach for treating tumors. The use of natural products to treat tumors has substantially progressed, with various extracts demonstrating antitumor effects. Nevertheless, there are few reports on the effectiveness of natural products in inducing apoptosis by specifically targeting and regulating the ERS pathway. Further investigation and elaboration of its mechanism of action are still needed. This paper examines the antitumor mechanism of action by which natural products exert antitumor effects from the perspective of ERS regulation to provide a theoretical basis and new research directions for tumor therapy.

5.
Environ Int ; 181: 108296, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37924603

RESUMEN

Irregularly shaped microplastics (MPs) released from infant feeding bottles (PP-IFBs) may exhibit increased cytotoxicity, in contrast to the commonly studied spherical MPs. This study presents an initial analysis of the thermal-oxidative aging process of plastic shedding from feeding bottles, and investigates the inflammatory response induced by these atypical MPs in human intestinal cells (Caco-2). The PP-IFBs' surface displayed non-uniform white patches and increased roughness, revealing substantial structural alteration and shedding, especially during actions such as shaking, boiling water disinfection, and microwave heating. FT-IR and 2D-COS analyses revealed that oxygen targeted the C-H and C-C bonds of polypropylene molecular chain, producing RO· and ·OH, thereby hastening polypropylene degradation. When human intestinal cells were exposed to MPs from PP-IFBs, oxidative stress was triggered, resulting in lowered glutathione levels, augmented reactive oxygen species (ROS), and heightened lipid peroxidation. Elevated levels of pro-inflammatory cytokines (IL-6 and TNFα) signified an active inflammatory process. The inflammatory response was notably more intense when exposed to MPs released through boiling water disinfection and microwave heating treatments, primarily due to the larger quantity of MPs released and their higher proportion of smaller particles. Furthermore, the NLRP3 inflammasome was identified as critical in initiating this inflammatory chain reaction due to the mitochondrial ROS surge caused by MPs exposure. This was further validated by inhibitor studies, emphasizing the role of the ROS/NLRP3/Caspase-1/IL-1ß signaling pathway in in promoting intestinal inflammation. Therefore, swift actions are recommended to protect infants against the potential health effects of MPs exposure.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Plásticos , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caspasa 1/metabolismo , Microplásticos , Células CACO-2 , Polipropilenos , Espectroscopía Infrarroja por Transformada de Fourier , Inflamación/metabolismo , Transducción de Señal , Agua
6.
Sci Total Environ ; 885: 163896, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37146825

RESUMEN

Security utilization measures (SUMs) for "production while remediating" in moderate and mild Cd-polluted paddy fields had been widely used. To investigate how SUMs drove rhizosphere soil microbial communities and reduced soil Cd bioavailability, a field experiment was conducted using soil biochemical analysis and 16S rRNA high-throughput sequencing. Results showed that SUMs improved rice yield by increasing the number of effective panicles and filled grains, while also inhibiting soil acidification and enhancing disease resistance by improving soil enzyme activities. SUMs also reduced the accumulation of harmful Cd in rice grains and transformed it into FeMn oxidized Cd, organic-bound Cd, and residual Cd in rhizosphere soil. This was partly due to the higher degree of soil DOM aromatization, which helped complex the Cd with DOM. Additionally, the study also found that microbial activity was the primary source of soil DOM, and that SUMs increased the diversity of soil microbes and recruited many beneficial microbes (Arthrobacter, Candidatus_Solibacter, Bryobacter, Bradyrhizobium, and Flavisolibacter) associated with organic matter decomposition, plant growth promotion, and pathogen inhibition. Besides, special taxa (Bradyyrhizobium and Thermodesulfovibrio) involved in sulfate/sulfur ion generation and nitrate/nitrite reduction pathway were observably enriched, which effectively reduced the soil Cd bioavailability through adsorption and co-precipitation. Therefore, SUMs not only changed the soil physicochemical properties (e.g., pH), but also drove rhizosphere microbes to participate in the chemical species transformation of soil Cd, thus reducing Cd accumulation in rice grains.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , ARN Ribosómico 16S , Contaminantes del Suelo/análisis , Disponibilidad Biológica , Oryza/química , Suelo/química
7.
Environ Pollut ; 317: 120845, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36496063

RESUMEN

Efficient degradation of residual antibiotics in livestock and poultry feces by black soldier flies (BSFs) has been widely reported. Nevertheless, the effects of widely detected microplastics in feces on the dynamic reduction of antibiotics and the transfer of gut bacterial resistome remain unclear. In this study, red fluorescence-labeled microplastics are observed to be abundantly distributed in BSFs gut, which caused epithelial cell damage along with gut peristalsis and friction, thereby releasing reactive oxygen species and activating the antioxidant enzyme system. In addition, they result in not only in inflammatory cytokine release to induce gut inflammation, but fecal hardening because of mucus released from the BSFs, thereby hindering organic mineralization and antibiotic degradation. Besides, the gut pathogenic bacteria easily obtain growth energy and crowded out ecological niches by reducing nitrate produced by inflammatory host cells to nitrite with nitrate reductase. Consequently, linear discriminant analysis effect size and detrended correspondence analysis found that microplastic intake significantly reshape the microbial community structure and cause the significant reduction of several important organic-decomposing bacteria and probiotics (e.g., Pseudomonadales, Coriobacteriales, Lachnospirales, and Ruminococcaceae). In addition, a large number of pathogenic bacteria (e.g., Enterococcaceae, Hungateiclostridiaceae, and Clostridia) are enriched in feces and BSFs gut. Weighted correlation network analysis and bubble diagram analysis indicate that microplastic intake intensified gut colonization of pathogenic bacteria carrying antibiotic-resistant genes/mobile genetic elements, driving the bloom of antibiotic resistance in transformed fecal piles. Therefore, microplastics in feces should be isolated as much as possible before insect transformation.


Asunto(s)
Dípteros , Microplásticos , Animales , Plásticos/farmacología , Ganado , Farmacorresistencia Microbiana/genética , Bacterias , Antibacterianos/toxicidad , Heces/microbiología , Genes Bacterianos
8.
Front Immunol ; 14: 1323115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173726

RESUMEN

Background: Cancer-associated fibroblasts (CAFs) represent the predominant stromal component within the tumour microenvironment (TME), exhibiting considerable heterogeneity and plasticity that significantly impact immune response and metabolic reprogramming within the TME, thereby influencing tumour progression. Consequently, investigating CAFs is of utmost importance. The objective of this study is to employ bibliometric analysis in order to evaluate the current state of research on CAFs and predict future areas of research and emerging trends. Methods: Conduct a comprehensive search for scholarly publications within the Web of Science Core Collection database, encompassing the time period from January 1, 2001, to December 31, 2022. Apply VOSviewer, CiteSpace, R software and Microsoft Excel for bibliometric analysis and visualisation. Results: This study involved a comprehensive analysis of 5,925 publications authored by 33,628 individuals affiliated with 4,978 institutions across 79 countries/regions. These publications were published in 908 journals, covering 14,495 keywords and 203,947 references. Notably, there was a significant increase in articles published between 2019 and 2022. China had the highest count of articles, while the United States emerged as the most frequently cited country. The primary research institutions in this field were Shanghai Jiao Tong University, Harvard University, and the University of Texas MD Anderson Cancer Center. Sotgia, Federica and Lisanti, Michael P from the University of Manchester, and Martinet, Wim from the University of Antwerp were the most prolific and highly cited authors. The journal Cancers had the highest number of publications, while Cancer Research was the most frequently cited journal. Molecular, biology, immunology, medicine and genetics were the main research disciplines in the field of CAFs. Key directions in CAFs research encompassed the study of transforming growth factor-ß, Fibroblast Activation Protein, breast cancer, as well as growth and metastasis. The findings from the analysis of keyword co-occurrence and literature co-citation have revealed several emerging hotspots and trends within the field of CAFs. These include STAT3, multidrug resistance, pancreatic ductal adenocarcinoma, pan-cancer analysis, preclinical evaluation, ionizing radiation, and gold nanoparticles. Conclusion: Targeting CAFs is anticipated to be a novel and effective strategy for cancer treatment. This study provides a comprehensive overview of the existing research on CAFs from 2001 to 2022, utilizing bibliometric analysis. The study identified the prominent areas of investigation and anticipated future research directions, with the aim of providing valuable insights and recommendations for future studies in the field of CAFs.


Asunto(s)
Fibroblastos Asociados al Cáncer , Nanopartículas del Metal , Neoplasias Pancreáticas , Humanos , China , Oro , Bibliometría , Microambiente Tumoral
9.
Sci Total Environ ; 826: 154002, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35231517

RESUMEN

Red mud (RM) was constantly reported to immobilize soil cadmium (Cd) and reduce Cd uptake by crops, but few studies investigated whether and how RM influenced rhizobacteria communities, which was a vital factor determining Cd bioavailability and plant growth. To address this concern, high-throughput sequencing and bioinformatics were used to analyze microbiological mechanisms underlying RM application reducing Cd accumulation in edible amaranth. Based on multiple statistical models (Detrended correspondence analysis, Bray-Curtis, weighted UniFrac, and Phylogenetic tree), this study found that RM reduced Cd content in plants not only through increasing rhizosphere soil pH, but by reshaping rhizobacteria communities. Special taxa (Alphaproteobacteria, Gammaproteobacteria, Actinobacteriota, and Gemmatimonadota) associated with growth promotion, anti-disease ability, and Cd resistance of plants preferentially colonized in the rhizosphere. Moreover, RM distinctly facilitated soil microbes' proliferation and microbial biofilm formation by up-regulating intracellular organic metabolism pathways and down-regulating cell motility metabolic pathways, and these microbial metabolites/microbial biofilm (e.g., organic acid, carbohydrates, proteins, S2-, and PO43-) and microbial cells immobilized rhizosphere soil Cd via the biosorption and chemical chelation. This study revealed an important role of reshaped rhizobacteria communities acting in reducing Cd content in plants after RM application.


Asunto(s)
Alphaproteobacteria , Contaminantes del Suelo , Alphaproteobacteria/metabolismo , Bacterias/metabolismo , Cadmio/análisis , Productos Agrícolas/metabolismo , Filogenia , Rizosfera , Suelo/química , Contaminantes del Suelo/análisis
10.
Water Res ; 202: 117460, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343871

RESUMEN

Understanding microbial metacommunity assembly and the underlying methanisms are fundamental objectives of aquatic ecology. However, little is known about how eutrophication, the primary water quality issue of aquatic ecosystems, regulates bacterioplankton metacommunity assembly at a regional scale in reservoirs. In this study, we applied a metacommunity framework to study bacterioplankton communities in 210 samples collected from 42 tropical coastal reservoirs in the wet summer season. We found that the spatial pattern of bacterioplankton community compositions (BCCs) at a regional scale was shaped mainly by species sorting. The reservoir trophic state index (TSI) was the key determinant of bacterioplankton metacommunity assembly. BCC turnover increased significantly with the TSI differences between sites (∆TSI) when ∆TSI was < 20, but remained at a level of about 80% when ∆TSI was > 20. Compared to oligo-mesotrophic and mesotrophic reservoirs, increased heterogeneity of co-occurrence bacterioplankton networks and bacterioplankton ß-diversity were observed across eutrophic reservoirs. We propose that larger variation in phytoplankton community assembly may play directly or indirectly deterministic processes in controlling the bacterioplankton metacommunity assembly and became the potential mechanisms behind the observed higher BCC heterogeneity across the eutrophic reservoirs. Our research contributes to a broader understanding of the ecological effects of eutrophication on reservoir ecosystems and provides clues to the management of the tropical coastal reservoirs.


Asunto(s)
Ecosistema , Eutrofización , Organismos Acuáticos , China , Fitoplancton , Calidad del Agua
11.
Zhonghua Nan Ke Xue ; 12(2): 120-2, 2006 Feb.
Artículo en Chino | MEDLINE | ID: mdl-16519145

RESUMEN

OBJECTIVE: To investigate the association between the polymorphism of CYP17 gene and risk of prostate cancer in Chinese Vigurs men. METHODS: A case-control study including 31 patients with prostate cancer and 104 aged-matched controls was conducted. The polymorphism was investigated by PCR using DNA from peripheral blood lymphocytes. The transition (T-->C) in the risk allele (A2) produced a new recognition site for the restriction enzyme MSPAI I. Three genotypes of CYP17 gene (A1/A1, A1/A2, A2/A2) were determined and confirmed by sequencing. RESULTS: Compared with male A1/A1 genotype, the odds ratios were 1.49 and 2.87 for the A1/A2 and A2/A2 genotypes (P =0.321, 0. 052, respectively). Comparison among 3 subgroups (division by genetypes) of prostate cancer patients, the PSA levels were not significantly different. But in the controls, PSA levels in A1/A2 group were higher but not significant than those in A1/A1 group (P = 0.062). Then, PSA levels in A2/A2 group were significantly higher than those A1/ A1 group (P = 0.018). CONCLUSION: More frequency of A2/A2 genotype in prostate cancer than in the control may be associated with the morbidity of prostate cancer in Vigurs male population. Meanwhile, the significant high PSA levels in A2/A2 group also support the view.


Asunto(s)
Polimorfismo Genético , Neoplasias de la Próstata/genética , Esteroide 17-alfa-Hidroxilasa/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , China/etnología , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Neoplasias de la Próstata/etnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA