Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Headache Pain ; 25(1): 110, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977951

RESUMEN

BACKGROUND: New daily persistent headache (NDPH) is a rare primary headache with unclear pathogenesis. Neuroimaging studies of NDPH are limited, and controversy still exists. Diffusion tensor imaging (DTI) is commonly used to study the white matter. However, lacking specificity, the potential pathological mechanisms of white matter microstructural changes remain poorly understood. In addition, the intricacy of gray matter structures impedes the application of the DTI model. Here, we applied an advanced diffusion model of neurite orientation dispersion and density imaging (NODDI) to study the white matter and cortical gray matter microstructure in patients with NDPH. METHODS: This study assessed brain microstructure, including 27 patients with NDPH, and matched 28 healthy controls (HCs) by NODDI. The differences between the two groups were assessed by tract-based spatial statistics (TBSS) and surface-based analysis (SBA), focusing on the NODDI metrics (neurite density index (NDI), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF)). Furthermore, we performed Pearson's correlation analysis between the NODDI indicators and clinical characteristics. RESULTS: Compared to HCs, patients with NDPH had a reduction of density and complexity in several fiber tracts. For robust results, the fiber tracts were defined as comprising more than 100 voxels, including bilateral inferior fronto-occipital fasciculus (IFOF), left superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF), as well as right corticospinal tract (CST). Moreover, the reduction of neurite density was uncovered in the left superior and middle frontal cortex, left precentral cortex, and right lateral orbitofrontal cortex and insula. There was no correlation between the NODDI metrics of these brain regions and clinical variables or scales of relevance after the Bonferroni correction. CONCLUSIONS: Our research indicated that neurite loss was detected in both white matter and cortical gray matter of patients with NDPH.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Gris , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Masculino , Adulto , Persona de Mediana Edad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Trastornos de Cefalalgia/diagnóstico por imagen , Trastornos de Cefalalgia/patología , Neuritas/patología
2.
Biomaterials ; 311: 122706, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39032219

RESUMEN

Medicine intervention is the major clinical treatment used to relieve the symptoms and delay the progression of rheumatoid arthritis (RA), but is limited by its poor targeted delivery and short therapeutic duration. Herein, we developed an injectable and bioadhesive gelatin-based (Gel) hydrogel as a local depot of leonurine (Leon)-loaded and folate-functionalized polydopamine (FA-PDA@Leon) nanoparticles for anti-inflammation and chondroprotection in RA. The nanoparticles could protect Leon and facilitate its entry into the M1 phenotype macrophage for intracellular delivery of Leon, while the hydrogel tightly adhered to the tissues in the joint cavity and prolonged the retention of FA-PDA@Leon nanoparticles, thus achieving higher availability and therapeutic efficiency of Leon. In vitro and in vivo experiments demonstrated that the Gel/FA-PDA@Leon hydrogel could strongly suppress the inflammatory response by down-regulating the JAK2/STAT3 signaling pathway in macrophages and protect the chondrocytes from ferritinophagy/ferroptosis. This contributed to maintaining the structural integrity of articular cartilage and accelerating the joint functional recovery. This work provides an effective and convenient strategy to achieve higher bioavailability and long-lasting therapeutic duration of medicine intervention in arthritis diseases.


Asunto(s)
Artritis Reumatoide , Ferroptosis , Hidrogeles , Inflamación , Nanopartículas , Polímeros , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Hidrogeles/química , Ratones , Nanopartículas/química , Inflamación/tratamiento farmacológico , Inflamación/patología , Ferroptosis/efectos de los fármacos , Polímeros/química , Células RAW 264.7 , Nanomedicina/métodos , Indoles/química , Indoles/farmacología , Indoles/administración & dosificación , Masculino , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ácido Fólico/química , Gelatina/química , Humanos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo
3.
Nat Commun ; 15(1): 4192, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760350

RESUMEN

Optical microcomb underpins a wide range of applications from communication, metrology, to sensing. Although extensively explored in recent years, challenges remain in key aspects of microcomb such as complex soliton initialization, low power efficiency, and limited comb reconfigurability. Here we present an on-chip microcomb laser to address these key challenges. Realized with integration between III and V gain chip and a thin-film lithium niobate (TFLN) photonic integrated circuit (PIC), the laser directly emits mode-locked microcomb on demand with robust turnkey operation inherently built in, with individual comb linewidth down to 600 Hz, whole-comb frequency tuning rate exceeding 2.4 × 1017 Hz/s, and 100% utilization of optical power fully contributing to comb generation. The demonstrated approach unifies architecture and operation simplicity, electro-optic reconfigurability, high-speed tunability, and multifunctional capability enabled by TFLN PIC, opening up a great avenue towards on-demand generation of mode-locked microcomb that is of great potential for broad applications.

4.
Microb Cell Fact ; 23(1): 153, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796416

RESUMEN

BACKGROUND: Dihydroxyacetone (DHA) stands as a crucial chemical material extensively utilized in the cosmetics industry. DHA production through the dephosphorylation of dihydroxyacetone phosphate, an intermediate product of the glycolysis pathway in Escherichia coli, presents a prospective alternative for industrial production. However, insights into the pivotal enzyme, dihydroxyacetone phosphate dephosphorylase (HdpA), remain limited for informed engineering. Consequently, the development of an efficient tool for high-throughput screening of HdpA hypermutants becomes imperative. RESULTS: This study introduces a methylglyoxal biosensor, based on the formaldehyde-responding regulator FrmR, for the selection of HdpA. Initial modifications involved the insertion of the FrmR binding site upstream of the -35 region and into the spacer region between the -10 and -35 regions of the constitutive promoter J23110. Although the hybrid promoter retained constitutive expression, expression of FrmR led to complete repression. The addition of 350 µM methylglyoxal promptly alleviated FrmR inhibition, enhancing promoter activity by more than 40-fold. The methylglyoxal biosensor system exhibited a gradual increase in fluorescence intensity with methylglyoxal concentrations ranging from 10 to 500 µM. Notably, the biosensor system responded to methylglyoxal spontaneously converted from added DHA, facilitating the separation of DHA producing and non-producing strains through flow cytometry sorting. Subsequently, the methylglyoxal biosensor was successfully applied to screen a library of HdpA mutants, identifying two strains harboring specific mutants 267G > T and D110G/G151C that showed improved DHA production by 68% and 114%, respectively. Expressing of these two HdpA mutants directly in a DHA-producing strain also increased DHA production from 1.45 to 1.92 and 2.29 g/L, respectively, demonstrating the enhanced enzyme properties of the HdpA mutants. CONCLUSIONS: The methylglyoxal biosensor offers a novel strategy for constructing genetically encoded biosensors and serves as a robust platform for indirectly determining DHA levels by responding to methylglyoxal. This property enables efficiently screening of HdpA hypermutants to enhance DHA production.


Asunto(s)
Técnicas Biosensibles , Dihidroxiacetona , Escherichia coli , Piruvaldehído , Piruvaldehído/metabolismo , Técnicas Biosensibles/métodos , Dihidroxiacetona/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Regiones Promotoras Genéticas , Ingeniería Metabólica/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
5.
Am J Sports Med ; 52(1): 140-154, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38164685

RESUMEN

BACKGROUND: Intra-articular (IA) platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) injections have shown efficacy and safety in treating osteoarthritis (OA). However, the effectiveness and mechanisms of combined intraosseous (IO) administration of these orthobiologics have yet to be explored. PURPOSE/HYPOTHESIS: The purpose of this study was to evaluate the effect on pain, cartilage, synovium/infrapatellar fat pad (IFP), and subchondral bone in rat knee OA, comparing isolated IA with combined IA and IO (IA+IO) injections of PRP or BMAC. It was hypothesized that combined injections would be superior to sole IA injections. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 48 rats were divided into 6 groups: sham (only joint puncture during OA induction with IA+IO saline injection treatment) and 5 groups with OA induction, control (IA+IO saline injection), PRP (IA PRP+IO saline injection), BMAC IA (IA BMAC+IO saline injection), PRP IA+IO (IA+IO PRP injection), and BMAC IA+IO (IA+IO BMAC injection). OA was induced by IA injection of monosodium iodoacetate (MIA). Rats were administered different orthobiologics according to their grouping 3 weeks after the MIA injection. Pain changes were evaluated using the weightbearing ratio assay at weeks 3, 4, 5, 7, and 9 after OA induction. Rats were euthanized at week 9 for gross, radiological, histological, immunohistochemical, and immunofluorescence assessments of cartilage, synovium, and subchondral bone. RESULTS: Compared with the control group, all orthobiologics injection groups had reduced joint pain. Compared with IA injection, IA+IO injections provided superior pain relief by suppressing calcitonin gene-related peptide and substance P in both the synovium/IFP and subchondral bone. IA+IO injections slowed the progression of subchondral bone lesions by inhibiting CD31hiEmcnhi vessel formation and excessive osteoclast and osteoblast turnover while preserving subchondral bone microarchitecture, slowing cartilage degeneration. However, IA+IO injections did not outperform isolated IA injections in reducing synovitis and synovium/IFP fibrosis. Compared with PRP, BMAC exhibited superior inhibition of pain-related mediators, but no significant differences were observed in synovitis suppression, infrapatellar fat pad fibrosis, and subchondral bone protection. CONCLUSION: IA+IO injections of orthobiologics were more effective in relieving pain, slowing cartilage degeneration, and inhibiting abnormal vascularization and remodeling compared with isolated IA injections. BMAC showed superior pain relief in the synovium/IFP and subchondral bone compared with PRP. Further research is needed to optimize PRP and BMAC components for enhanced efficacy in OA management. CLINICAL RELEVANCE: Our findings contribute to advancing the understanding of pain relief mechanisms and support the endorsement of IO injection of orthobiologics for the treatment of OA and joint pain.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Osteoartritis de la Rodilla , Plasma Rico en Plaquetas , Sinovitis , Ratas , Animales , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/patología , Ácido Yodoacético , Dolor , Enfermedades de los Cartílagos/patología , Inyecciones Intraarticulares , Cartílago/patología , Artralgia/tratamiento farmacológico , Fibrosis , Resultado del Tratamiento , Cartílago Articular/patología
6.
Sci Total Environ ; 917: 170441, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38290678

RESUMEN

The bioavailability of cerium (Ce) and its toxic effects on aquatic organisms are still unclear, which limits the toxicity prediction and pollution control for this element. Here, the acute toxicity of Ce to Daphnia magna neonates and the responses of the antioxidant system were investigated, and the quantitative relationships between the toxicity of Ce and environmental factors were determined. The 24 and 48 h EC50Ce-D values based on the dissolved concentration of Ce in Daphnia magna were 60.6 and 10.9 µM, respectively, and the EC50Ce3+ values were 23.4 and 3.73 µM, respectively. After Ce exposure at environmentally relevant concentrations (0.5-3.5 µM), significant increases in superoxide dismutase activity and malondialdehyde content were observed in Daphnia magna, while significant decreases in catalase activity and H2O2 content occurred. Low levels of Ce cause oxidative damage to Daphnia magna and adverse impacts on the antioxidant system; however, further molecular-based studies are needed. The addition of Ca2+ or Na+ reduced the acute toxicity of Ce to Daphnia magna. In contrast, Mg2+ (MgSO4) promoted Ce toxicity, which is a new finding related to the interaction effects between cations and rare earth elements on biological ligands; however, the effects of SO42+ could not be distinguished. Complexation with organic ligands could significantly reduce the toxicity of Ce to Daphnia magna; however, complexes of Ce with citric acid and malic acid might be bioavailable to Daphnia magna. In the absence of organic ligands and competing metals, the binding constant of Ce3+ to Daphnia magna at toxic concentrations was 5.83. The log K values for the competitive effects of Ca2+ and Na+ were 3.73 and 2.59, respectively, while the log K value for the protective effect of fulvic acid was 3.76. These results contribute to understanding the toxicity of Ce and will help predict the toxicity of Ce in freshwater.


Asunto(s)
Cerio , Contaminantes Químicos del Agua , Animales , Daphnia magna , Antioxidantes/metabolismo , Cerio/metabolismo , Ligandos , Peróxido de Hidrógeno/farmacología , Daphnia , Sodio/química , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA