Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(32): 8265-8271, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106046

RESUMEN

The properties of liquid-liquid interfaces are intricately linked to its structure, with a particular focus on the concentration distribution within the interface. To obtain precise information regarding the concentration distribution, we have developed a high-resolution soft X-ray imaging method for liquid-liquid interfaces. This work focused on representative partially miscible systems, analyzing the interfacial concentration distribution profiles of water-alkanols under both steady-state and dynamic processes, and obtaining the diffusion coefficients of different water concentrations in alkanols. Significant disparities in concentration distributions and the concentration-related diffusion coefficients were observed despite comparable diffusion distances within the same system across different states. Meanwhile, it was found that alkanols exhibit adsorption phenomena at the interface. This newfound knowledge serves as a crucial stepping stone toward a deeper understanding of partially miscible systems. Our study opens a way to explore liquid-liquid interface information with high-resolution.

2.
Micromachines (Basel) ; 14(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37241638

RESUMEN

The absorption grating is a critical component of neutron phase contrast imaging technology, and its quality directly influences the sensitivity of the imaging system. Gadolinium (Gd) is a preferred neutron absorption material due to its high absorption coefficient, but its use in micro-nanofabrication poses significant challenges. In this study, we employed the particle filling method to fabricate neutron absorption gratings, and a pressurized filling method was introduced to enhance the filling rate. The filling rate was determined by the pressure on the surface of the particles, and the results demonstrate that the pressurized filling method can significantly increase the filling rate. Meanwhile, we investigated the effects of different pressures, groove widths, and Young's modulus of the material on the particle filling rate through simulations. The results indicate that higher pressure and wider grating grooves lead to a significant increase in particle filling rate, and the pressurized filling method can be utilized to fabricate large-size grating and produce uniformly filled absorption gratings. To further improve the efficiency of the pressurized filling method, we proposed a process optimization approach, resulting in a significant improvement in the fabrication efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA