Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.298
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; : 109908, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299407

RESUMEN

Forkhead box O (FOXO) proteins are a subgroup of the forkhead family of transcription factors that play important roles in the immune response. In this study, we cloned and identified a FOXO gene named MnFOXO from Macrobrachium nipponense. The full-length cDNA of MnFOXO is 2086 bp and contains a 1302 bp open reading frame, which encodes 433 amino acids. MnFOXO consists of five low-complexity regions and a conserved DNA-binding domain (forkhead domain). Evolutionary analyses indicate that MnFOXO proteins cluster with FOXO proteins from crustaceans. Tissue distribution analysis showed that MnFOXO was expressed in all detected tissues, with relatively higher expression levels in the intestine, eyestalks, stomach, and hemocytes than in the hepatopancreas, gills, and heart. The expression levels of MnFOXO in the hepatopancreas and intestine were significantly up-regulated in M. nipponense infected with white spot syndrome virus (WSSV) at 24 and 48 h. Furthermore, knockdown of MnFOXO increased the expression of WSSV envelope protein VP28 during WSSV infection. Further studies showed that knockdown of the MnFOXO gene in M. nipponense inhibited the synthesis of Dicers (MnDicer1, MnDicer2) and Argonautes (MnArgo1, MnArgo2) during WSSV invasion. These findings suggest that MnFOXO positively regulates the expression of Dicers and Argos, and inhibits the expression of VP28. This study provides new evidence for understanding the role of FOXO in antiviral innate immunity in crustaceans.

2.
Heliyon ; 10(17): e37026, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296088

RESUMEN

Background: An association between increased aortic root dimensions (ARD) and elevated risk of cardiovascular mortality has been reported in the general population. However, evidence regarding the association between ARD and mortality in patients with acute heart failure (AHF) is limited. Methods: In a nationwide prospective cohort of the China Patient-Centered Evaluative Assessment of Cardiac Events Prospective Heart Failure Study, ARD was measured during diastole using echocardiography and indexed to body mass index (BMI). Cox proportional hazard models were used to validate the association between BMI-indexed ARD and mortality. Additionally, the relationship between BMI-indexed ARD and mortality was presented using restricted cubic spline in all populations, and both sexes. Results: A total of 2125 participants with ARD were included in the final analysis, among of 38.4 % were women, with a median age of 67 years. Over a median follow-up period of 54.4 (interquartile range: 30.1 to 59.7) months, 895 deaths occurred, with 750 attributed to cardiovascular causes and 145 to non-cardiovascular causes. Compared to the highest tertile group of BMI-indexed ARD, the lowest tertile group had a lower risk of cardiovascular mortality (hazard ratio [HR], 0.71; 95 % confidence interval [CI], 0.58 to 0.87; P < 0.001) and all-cause mortality (HR, 0.68; 95 % CI, 0.56 to 0.81; P < 0.001). Similarly, the middle tertile group also had a lower risk of cardiovascular mortality (HR, 0.78; 95 % CI, 0.65 to 0.93; P = 0.007) and all-cause mortality (HR, 0.75; 95 % CI, 0.63 to 0.89; P < 0.001). Considering the competing risks, the lowest BMI-indexed ARD groups showed a significant mortality risk of cardiovascular mortality in all populations, and both sexes. Moreover, the relationship between BMI-indexed ARD and mortality was linear in males, while a "J" shaped relationship was observed in females. Conclusion: Lower BMI-indexed ARD was associated with a decreased risk of all-cause and cardiovascular mortality than those with higher BMI-indexed ARD in AHF. Additionally, a discrepancy was observed between the sexes in the relationship between BMI-indexed ARD and mortality. These findings contribute to the prompt identification of potential mortality risks in patients with AHF.

3.
Rev Cardiovasc Med ; 25(8): 279, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39228489

RESUMEN

Background: Patients with acute heart failure (HF) are at high risk of 30-day readmission. Little is known about the characteristics and associated factors of 30-day readmissions among patients with acute HF in China. Methods: We enrolled consecutive patients hospitalized for acute HF and discharged from 52 hospitals in China from August 2016 to May 2018. We describe the rate of 30-day readmission, the time interval from discharge to readmission, and the causes of readmission. We also analyzed the factors associated with readmission risk by fitting multivariate Cox proportional hazards models. Results: We included 4875 patients with a median age of 67 years (interquartile range, 57-75), 3045 (62.5%) of whom were male. Within 30 days after discharge, 613 (12.6%) patients were readmitted for all causes, with a median from discharge to readmission of 12 (6-21) days. Most readmissions were attributed to cardiovascular causes (71.1%) and 60.0% to HF-related causes. Readmission occurred within 14 days of discharge in more than half of the patients (56.4%). Diabetes (hazard ratio [HR]: 1.25, 95% confidence interval [95% CI]: 1.06-1.50), anemia (HR: 1.26, 95% CI: 1.03-1.53), high New York Heart Association classification (HR: 1.48, 95% CI: 1.08-2.01), elevated N-terminal pro-B type natriuretic peptide (HR: 1.67, 95% CI: 1.24-2.25), and high-sensitivity cardiac troponin T (HR: 1.26, 95% CI: 1.01-1.58) were associated with increased risks of readmission. High systolic blood pressure (HR: 0.56, 95% CI: 0.38-0.81) and Kansas City Cardiomyopathy Questionnaire-12 scores (HR: 0.64, 95% CI: 0.44-0.94) were associated with decreased risk of readmission. Conclusions: In China, almost one in eight patients with acute HF were readmitted within 30 days after discharge, mainly due to cardiovascular reasons, and approximately three-fifths of the readmissions occurred in the first 14 days. Both clinical and patient-centered characteristics were associated with readmission.

4.
Appl Microbiol Biotechnol ; 108(1): 462, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264460

RESUMEN

Bioinformatic analysis revealed that the genomes of ubiquitous Penicillium spp. might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained uncharacterized. In this study, a detailed investigation of co-culture fermentation including the basidiomycete Armillaria mellea CPCC 400891 and the P. brasilianum CGMCC 3.4402 enabled the isolation of five new compounds including two bisabolene-type sesquiterpenes (arpenibisabolanes A and B), two carotane-type sesquiterpenes (arpenicarotanes A and B), and one polyketide (arpenichorismite A) along with seven known compounds. The assignments of their structures were deduced by the extensive analyses of detailed spectroscopic data, electronic circular dichroism spectra, together with delimitation of the biogenesis. Most new compounds were not detected in monocultures under the same fermentation conditions. Arpenibisabolane A represents the first example of a 6/5-fused bicyclic bisabolene. The bioassay of these five new compounds exhibited no cytotoxic activities in vitro against three human cancer cell lines (A549, MCF-7, and HepG2). Moreover, sequence alignments and bioinformatic analysis to other metabolic pathways, two BGCs including Pb-bis and Pb-car, responsible for generating sesquiterpenoids from co-culture were identified, respectively. Furthermore, based on the chemical structures and deduced gene functions of the two clusters, a hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed. These results demonstrated that the co-culture approach would facilitate bioprospecting for new metabolites even from the well-studied microbes. Our findings would provide opportunities for further understanding of the biosynthesis of intriguing sesquiterpenoids via metabolic engineering strategies. KEY POINTS: • Penicillium and Armillaria co-culture facilitates the production of diverse secondary metabolites • Arpenibisabolane A represents the first example of 6/5-fused bicyclic bisabolenes • A hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed.


Asunto(s)
Armillaria , Técnicas de Cocultivo , Fermentación , Penicillium , Metabolismo Secundario , Sesquiterpenos , Armillaria/metabolismo , Armillaria/genética , Penicillium/metabolismo , Penicillium/genética , Penicillium/química , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Humanos , Familia de Multigenes , Línea Celular Tumoral , Vías Biosintéticas/genética , Policétidos/metabolismo , Policétidos/química , Policétidos/aislamiento & purificación , Células Hep G2
5.
Artículo en Inglés | MEDLINE | ID: mdl-39269692

RESUMEN

The brain-computer interface (BCI) systems based on motor imagery typically rely on a large number of electrode channels to acquire information. The rational selection of electroencephalography (EEG) channel combinations is crucial for optimizing computational efficiency and enhancing practical applicability. However, evaluating all potential channel combinations individually is impractical. This study aims to explore a strategy for quickly achieving a balance between maximizing channel reduction and minimizing precision loss. To this end, we developed a spatio-temporal attention perception network named STAPNet. Based on the channel contributions adaptively generated by its subnetwork, we propose an extended step bi-directional search strategy that includes variable ratio channel selection (VRCS) and strided greedy channel selection (SGCS), designed to enhance global search capabilities and accelerate the optimization process. Experimental results show that on the High Gamma and BCI Competition IV 2a public datasets, the framework respectively achieved average maximum accuracies of 91.47% and 84.17%. Under conditions of zero precision loss, the average number of channels was reduced by a maximum of 87.5%. Additionally, to investigate the impact of neural information loss due to channel reduction on the interpretation of complex brain functions, we employed a heatmap visualization algorithm to verify the universal importance and complete symmetry of the selected optimal channel combination across multiple datasets. This is consistent with the brain's cooperative mechanism when processing tasks involving both the left and right hands.

6.
Appl Microbiol Biotechnol ; 108(1): 447, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190181

RESUMEN

Perillic acid has been studied as an anticancer and antimicrobial drug. Production of perillic acid has attracted considerable attention. Meanwhile, Candida tropicalis is an unconventional diploid yeast, most significantly characterized by its ability to metabolize alkanes or fatty acids for growth and proliferation. Therefore, perillic acid's precursor (L-limonene) in C. tropicalis was firstly synthesized by expressing a Mentha spicata L-limonene synthase gene, LS_Ms in this work. Expression of a gene which encoded for a truncated version of tLS_Ms increased the production of L-limonene with a 2.78-fold increase in the titer over C. tropicalis GJR-LS-01. Compartmentalized expression of the gene tLS_Ms inhibited the production of L-limonene in C. tropicalis compared to cytoplasmic expression. Cytoplasmic overexpression of seven precursor synthesis genes significantly enhanced the production of L-limonene in C. tropicalis compared to their compartmentalized expression (mitochondria or peroxisomes), which increased by 31.7-fold in C. tropicalis GJR-tLS-01. The L-limonene titer in C. tropicalis GJR-EW-tLS-04 overexpressing the mutant gene ERG20WW in the cytoplasm was significantly increased, 11.33-fold higher than the control. The titer of L-limonene for 60 g/L glucose was increased by 1.40-fold compared to the control. Finally, a Salvia miltiorrhiza cytochrome P450 enzyme gene CYP7176 and an Arabidopsis thaliana NADPH cytochrome P450 reductase gene CPR were heterologously expressed in C. tropicalis GJR-EW-tLS-04C for the synthesis of perillic acid, which reached a titer of 106.69 mg/L in a 5-L fermenter. This is the first report of de novo synthesis of perillic acid in engineered microorganisms. The results also showed that other chemicals may be efficiently produced in C. tropicalis. KEY POINTS: • Key genes cytoplasmic expression was conducive to L-limonene production in C. tropicalis. • Perillic acid was first synthesized de novo in engineered microorganisms. • The titer of perillic acid reached 106.69 mg/L in a 5-L fermenter.


Asunto(s)
Candida tropicalis , Limoneno , Ingeniería Metabólica , Monoterpenos , Candida tropicalis/genética , Candida tropicalis/metabolismo , Ingeniería Metabólica/métodos , Limoneno/metabolismo , Monoterpenos/metabolismo , Mentha spicata/genética , Mentha spicata/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Terpenos/metabolismo , Ciclohexenos
7.
Cell Death Dis ; 15(8): 608, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168971

RESUMEN

Recently, various cancer types have been identified to express a distinct subset of Interferon-stimulated genes (ISGs) that mediate therapy resistance. The mechanism through which cancer cells maintain prolonged Interferon stimulation effects to coordinate resistance remains unclear. Our research demonstrated that aberrant upregulation of TAGLN2 is associated with gastric cancer progression, and inhibiting its expression renders gastric cancer cells more susceptible to chemotherapy and radiation. We uncovered a novel role for TAGLN2 in the upregulation of resistance signature ISGs by enhancing YBX1-associated ssDNA aggregation and cGAS-STING pathway activation. TAGLN2 modulates YBX1 by recruiting c-Myc and SOX9 to YBX1 promoter region and directly interacting with AKT-YBX1, thereby enhancing YBX1 phosphorylation and nuclear translocation. Significantly, targeted downregulation of key proteins, inhibition of the TAGLN2-YBX1-AKT interaction (using Fisetin or MK2206) or disruption of the cGAS-STING pathway substantially reduced ssDNA accumulation, subsequent ISGs upregulation, and therapy resistance. The combination of Cisplatin with MK2206 displayed a synergistic effect in the higher TAGLN2-expressing xenograft tumors. Clinical analysis indicated that a derived nine-gene set effectively predicts therapeutic sensitivity and long-term prognosis in gastric cancer patients. These findings suggest that TAGLN2, YBX1 and induced ISGs are novel predictive markers for clinical outcomes, and targeting this axis is an attractive therapeutic sensitization strategy.


Asunto(s)
Daño del ADN , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Neoplasias Gástricas , Proteína 1 de Unión a la Caja Y , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Línea Celular Tumoral , Ratones , Resistencia a Antineoplásicos/genética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Ratones Desnudos , Interferones/metabolismo , Regulación Neoplásica de la Expresión Génica , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Femenino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos BALB C , Masculino
8.
J Am Heart Assoc ; 13(16): e034996, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39136302

RESUMEN

BACKGROUND: Poor cardiovascular-kidney-metabolic (CKM) health is associated with premature mortality and excess morbidity in the United States. Adverse social conditions have a prominent impact on cardiometabolic diseases during the life course. We aim to examine the association between social risk profile (SRP) and CKM multimorbidity among US adults. METHODS AND RESULTS: We used data from the National Health and Nutrition Examination Survey from 1999 to 2018. The definition of CKM syndrome is the coexistence of subclinical or clinical cardiovascular disease, chronic kidney disease, and metabolic disorders. We classified participants by 4 CKM stages according to the different clinical severity of different forms of CKM syndrome. We calculated the summed number of positive SRP measures, including employed, high-income level, food secure, high education attainment, private insurance, owning a house, and married, as SRP scores and classified them into 4 levels by quartiles: low (0-2), lower-middle (3-4), upper-middle (5-6), and high (7-8). A total of 18 373 US adults, aged 20 to 79 years, were included in our analyses. There were 2567 (9.4%) participants with low SRP score level. Most individual SRP measures and a combined SRP score were associated with CKM stages. Compared with high SRP score level, low SRP level was associated with higher odds of having CKM stage 1 (odds ratio [OR], 1.34 [95% CI, 1.06-1.70]), CKM stage 2 (OR, 2.03 [95% CI, 1.59-2.58]), CKM stage 3 (OR, 5.28 [95% CI, 3.29-8.47]), and CKM stage 4 (OR, 5.97 [95% CI, 4.20-8.49]). CONCLUSIONS: Cumulative social disadvantage, denoted by higher SRP burden, was associated with higher odds of CKM multimorbidity, independent of demographic and lifestyle factors.


Asunto(s)
Síndrome Metabólico , Encuestas Nutricionales , Humanos , Masculino , Síndrome Metabólico/epidemiología , Síndrome Metabólico/diagnóstico , Persona de Mediana Edad , Femenino , Estados Unidos/epidemiología , Adulto , Anciano , Adulto Joven , Síndrome Cardiorrenal/epidemiología , Síndrome Cardiorrenal/diagnóstico , Factores de Riesgo , Medición de Riesgo , Determinantes Sociales de la Salud , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/diagnóstico , Factores Socioeconómicos , Multimorbilidad , Estudios Transversales , Enfermedades Cardiovasculares/epidemiología
10.
Front Microbiol ; 15: 1379064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132138

RESUMEN

Background: Non-alcoholic fatty liver disease (NAFLD) is a type of liver metabolic syndrome. Employing multi-omics analyses encompassing the microbiome, metabolome and transcriptome is crucial for comprehensively elucidating the biological processes underlying NAFLD. Methods: Hepatic tissue, blood and fecal samples were obtained from 9 NAFLD model mice and 8 normal control mice. Total fecal microbiota DNA was extracted, and 16S rRNA was amplified, to analyze alterations in the gut microbiota (GM) induced by NAFLD. Subsequently, diagnostic strains for NAFLD were screened, and their functional aspects were examined. Differential metabolites and differentially expressed genes were also screened, followed by enrichment analysis. Correlations between the differential microbiota and metabolites, as well as between the DEGs and differential metabolites were studied. A collinear network involving key genes-, microbiota-and metabolites was constructed. Results: Ileibacterium and Ruminococcaceae, both belonging to Firmicutes; Olsenella, Duncaniella and Paramuribaculum from Bacteroidota; and Bifidobacterium, Coriobacteriaceae_UCG_002 and Olsenella from Actinobacteriota were identified as characteristic strains associated with NAFLD. Additionally, differentially expressed metabolites were predominantly enriched in tryptophan, linoleic acid and methylhistidine metabolism pathways. The functions of 2,510 differentially expressed genes were found to be associated with disease occurrence. Furthermore, a network comprising 8 key strains, 14 key genes and 83 key metabolites was constructed. Conclusion: Through this study, we conducted a comprehensive analysis of NAFLD alterations, exploring the gut microbiota, genes and metabolites of the results offer insights into the speculated biological mechanisms underlying NAFLD.

11.
Anal Chem ; 96(33): 13345-13351, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39120011

RESUMEN

Small extracellular vesicles (sEVs) are proven to hold great promise for diverse therapeutic and diagnostic applications. However, batch preparation of sEVs with high purity and bioactivity is a prerequisite for their clinical translations. Herein, we present an electric field assisted tangential flow filtration system (E-TFF), which integrates size-based filtration with electrophoretic migration-based separation to synergistically achieve the isolation of high-quality sEVs from cell culture medium. Compared with the gold-standard ultracentrifugation (UC) method, E-TFF not only improved the purity of sEVs by 1.4 times but also increased the yield of sEVs by 15.8 times. Additionally, the entire isolation process of E-TFF was completed within 1 h, about one-fourth of the time taken by UC. Furthermore, the biological activity of sEVs isolated by E-TFF was verified by co-incubation of sEVs derived from human umbilical cord mesenchymal stem cells (hUCMSCs) with HT22 mouse hippocampal neuronal cells exposed to amyloid-ß (Aß). The results demonstrated that the sEVs isolated by E-TFF exhibited a significant neuroprotective effect. Overall, the E-TFF platform provides a promising and robust strategy for batch preparation of high-quality sEVs, opening up a broad range of opportunities for cell-free therapy and precision medicine.


Asunto(s)
Vesículas Extracelulares , Filtración , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animales , Ratones , Humanos , Filtración/instrumentación , Filtración/métodos , Células Madre Mesenquimatosas/citología , Medios de Cultivo/química , Péptidos beta-Amiloides/metabolismo , Línea Celular
12.
Artículo en Inglés | MEDLINE | ID: mdl-39137073

RESUMEN

Understanding emotions from diverse contexts has received widespread attention in computer vision communities. The core philosophy of Context-Aware Emotion Recognition (CAER) is to provide valuable semantic cues for recognizing the emotions of target persons by leveraging rich contextual information. Current approaches invariably focus on designing sophisticated structures to extract perceptually critical representations from contexts. Nevertheless, a long-neglected dilemma is that a severe context bias in existing datasets results in an unbalanced distribution of emotional states among different contexts, causing biased visual representation learning. From a causal demystification perspective, the harmful bias is identified as a confounder that misleads existing models to learn spurious correlations based on likelihood estimation, limiting the models' performance. To address the issue, we embrace causal inference to disentangle the models from the impact of such bias, and formulate the causalities among variables in the CAER task via a customized causal graph. Subsequently, we present a Contextual Causal Intervention Module (CCIM) to de-confound the confounder, which is built upon backdoor adjustment theory to facilitate seeking approximate causal effects during model training. As a plug-and-play component, CCIM can easily integrate with existing approaches and bring significant improvements. Systematic experiments on three datasets demonstrate the effectiveness of our CCIM.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39186185

RESUMEN

The catalysts with three-dimensional porous (3DP) CeO2, LaFeO3 and SrTiO3 are synthesized by sol-gel method and chemical precipitation method. The resulting multi-component 3DP CeO2/LaFeO3/SrTiO3 composite material featured a high specific surface area (26.08 m2/g), which can provide more surface active sites to improve adsorption capacity and catalytic performance. The photocatalytic, Fenton-like, photo-Fenton-like performance of the catalyst are studied on decolorization of RhB under UV irradiation, respectively. 3DP CeO2/LaFeO3/SrTiO3 exhibits high catalytic performance. Compared with photocatalytic or Fenton-like performance, 3DP CeO2/LaFeO3/SrTiO3 catalyst exhibits higher photo-Fenton-like performance, facilitating efficient decolorization of the rhodamine B. Moreover, the initial reaction rate on decolorization of RhB with 3DP CeO2/LaFeO3/SrTiO3 is 10.55, 5.52, 3.67 and 1.51 times higher than that with SrTiO3, LaFeO3, 3DP CeO2 and 3DP CeO2/LaFeO3, respectively. Meanwhile, 3DP LaFeO3/CeO2/SrTiO3 has a wider pH usage range in the synergistic reaction. Finally, a catalytic mechanism for the decolorization of rhodamine B is proposed. The continuous cycling of Fe3+/Fe2+ and Ce4+/Ce3+ and the production of active substances are achieved under the photo-Fenton-like effect of the catalyst.

14.
Sensors (Basel) ; 24(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39205142

RESUMEN

The use of a micropile group is an effective method for small and medium-sized slope management. However, there is limited research on the pile-soil interaction mechanism of micropile groups. Based on transparent soil and PIV technology, a test platform for the lateral load testing of slopes was constructed, and eight groups of transparent soil slope model experiments were performed. The changes in soil pressure and pile top displacement at the top of the piles during lateral loading were obtained. We scanned and photographed the slope, and obtained the deformation characteristics of the soil interior based on particle image velocimetry. A three-dimensional reconstruction program was developed to generate the displacement isosurface behind the pile. The impacts of various arrangement patterns and connecting beams on the deformation attributes and pile-soil interaction mechanism were explored, and the pile-soil interaction model of group piles was summarized. The results show that the front piles in a staggered arrangement bore more lateral thrust, and the distribution of soil pressure on each row of piles was more uniform. The connecting beams enhanced the overall stiffness of the pile group, reduced pile displacement, facilitated coordinated deformation of the pile group, and enhanced the anti-sliding effect of the pile-soil composite structure.

16.
Poult Sci ; 103(9): 103947, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986358

RESUMEN

Chickens exhibit extensive genetic diversity and are distributed worldwide. Different chicken breeds have evolved to thrive in diverse environmental conditions. However, research on the genetic mechanisms underlying chicken adaptation to extreme environments, such as tropical, frigid and drought-prone regions, remains limited. In this study, we conducted whole-genome sequencing of 240 individuals from six native chicken breeds in Xinjiang, China, as well as 4 publicly available chicken breeds inhabiting regions with varying annual precipitations, temperatures, and altitudes. Our analysis revealed several genetic variants among the examined breeds. Furthermore, we investigated the genetic diversity and population structure of breeds residing in extreme drought and temperature environments by comparing them. Notably, native chicken breeds exhibited different genetic diversity and population structures. Moreover, we identified candidate genes associated with chicken adaptability to the environment, such as CORO2A, CTNNA3, AGMO, GRID2, BBOX1, COL3A1, INSR, SOX5, MAP2 and PLPPR1. Additionally, pathways such as lysosome, cysteine and methionine metabolism, glycosaminoglycan degradation, and Wnt signaling may be play crucial roles in regulating chicken adaptation to drought environments. Overall, these findings contribute to our understanding of the genetic mechanisms governing chicken adaptation to extreme environments, and also offer insights for enhancing the resilience of chicken breeds to different climatic conditions.


Asunto(s)
Adaptación Fisiológica , Pollos , Sequías , Animales , Pollos/genética , Pollos/fisiología , China , Adaptación Fisiológica/genética , Secuenciación Completa del Genoma/veterinaria , Variación Genética , Clima Tropical
17.
Anal Chem ; 96(29): 12030-12039, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39001809

RESUMEN

Marine microbes drive pivotal transformations in planetary-scale elemental cycles and have crucial impacts on global biogeochemical processes. Metaproteomics is a powerful tool for assessing the metabolic diversity and function of marine microbes. However, hundreds of liters of seawater are required for normal metaproteomic analysis due to the sparsity of microbial populations in seawater, which poses a substantial challenge to the widespread application of marine metaproteomics, particularly for deep seawater. Herein, a sensitive marine metaproteomics workflow, named sensitive marine metaproteome analysis (SMMP), was developed by integrating polycarbonate filter-assisted microbial enrichment, solid-phase alkylation-based anti-interference sample preparation, and narrow-bore nanoLC column for trace peptide separation and characterization. The method provided more than 8500 proteins from 1 L of bathypelagic seawater samples, which covered diverse microorganisms and crucial functions, e.g., the detection of key enzymes associated with the Wood-Ljungdahl pathway. Then, we applied SMMP to investigate vertical variations in the metabolic expression patterns of marine microorganisms from the euphotic zone to the bathypelagic zone. Methane oxidation and carbon monoxide (CO) oxidation were active processes, especially in the bathypelagic zone, which provided a remarkable energy supply for the growth and proliferation of heterotrophic microorganisms. In addition, marker protein profiles detected related to ammonia transport, ammonia oxidation, and carbon fixation highlighted that Thaumarchaeota played a critical role in primary production based on the coupled carbon-nitrogen process, contributing to the storage of carbon and nitrogen in the bathypelagic regions. SMMP has low microbial input requirements and yields in-depth metaproteome analysis, making it a prospective approach for comprehensive marine metaproteomic investigations.


Asunto(s)
Proteómica , Agua de Mar , Agua de Mar/microbiología , Agua de Mar/química , Proteómica/métodos , Microbiota , Proteoma/análisis , Proteoma/metabolismo , Metano/metabolismo , Metano/análisis , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Oxidación-Reducción , Monóxido de Carbono/análisis , Monóxido de Carbono/metabolismo
18.
Fitoterapia ; 177: 106122, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992474

RESUMEN

Chemical investigation on the aqueous extract of Dendrobium aphyllum led to the isolation of thirty-one constituents with structures identified by analysis of the extensive spectroscopic data (1D/2D NMR, MS, UV, and ECD), including previously undescribed two bibenzyls, one furfural, and one phenolic acid, namely trigonopol D (1), trigonopol C (2), dendrofunan A (10), and 6-(4-hydroxy-3-methoxyphenyl)-3,6-dioxohexyl acetate (30), respectively, as well as twenty-seven known ones. Among them, there were one new natural product (11), seven compounds (6-7, 9, 12, 20, 28, 31) described from the genus Dendrobium for the first time, and fifteen compounds (8, 13-17, 19, 21-27, 29) isolated from D. aphyllum for the first time. Further, the antioxidant and anti-inflammatory potentials of fifteen compounds (4-5, 8, 11-12, 14-19, 22, 24, 26, and 29) with significant scavenging capacities against DPPH and hydroxyl radicals, and virtual docking activities inhibiting COX-2 and 5-LOX, respectively. Our study may draw the attention of medicinal plant taxonomists and supply potential quality markers for discrimination of D. aphyllum from other species in Dendrobium genus.


Asunto(s)
Antiinflamatorios , Antioxidantes , Bibencilos , Dendrobium , Fitoquímicos , Dendrobium/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/química , Estructura Molecular , Bibencilos/farmacología , Bibencilos/aislamiento & purificación , Bibencilos/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fenantrenos/farmacología , Fenantrenos/aislamiento & purificación , Fenantrenos/química , Fenilpropionatos/aislamiento & purificación , Fenilpropionatos/farmacología , Fenilpropionatos/química , China , Animales , Ratones , Araquidonato 5-Lipooxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Furanos/aislamiento & purificación , Furanos/farmacología , Furanos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ciclooxigenasa 2/metabolismo
19.
Se Pu ; 42(7): 623-631, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-38966971

RESUMEN

Protein phosphorylation is one of the most common and important post-translational modifications that regulates almost all life processes. In particular, protein phosphorylation regulates the development of major diseases such as tumors, neurodegenerative diseases, and diabetes. For example, excessive phosphorylation of Tau protein can cause neurofibrillary tangles, leading to Alzheimer's disease. Therefore, large-scale methods for identifying protein phosphorylation must be developed. Rapid developmentin efficient enrichment methods and biological mass spectrometry technologies have enabled the large-scale identification of low-abundance protein O-phosphorylation modifications in, allowing for a more thorough study of their biological functions. The N-phosphorylation modifications that occur on the side-chain amino groups of histidine, arginine, and lysine have recently received increased attention. For example, the biological function of histidine phosphorylation in prokaryotes has been well studied; this type of modification regulates signal transduction and sugar metabolism. Two mammalian pHis kinases (NME1 and NME2) and three pHis phosphatases (PHPT1, LHPP, and PGAM5) have been successfully identified using various biological methods. N-Phosphorylation is involved in multiple biological processes, and its functions cannot be ignored. However, N-phosphorylation is unstable under acidic and thermal conditions owing to the poor chemical stability of the P-N bond. Unfortunately, the current O-phosphorylation enrichment method, which relies on acidic conditions, is unsuitable for N-phosphorylation enrichment, resulting in a serious lag in the large-scale identification of protein N-phosphorylation. The lack of enrichment methods has also seriously hindered studies on the biological functions of N-phosphorylation. Therefore, the development of efficient enrichment methods that target protein N-phosphorylation is an urgent undertaking. Research on N-phosphorylation proteome enrichment methods is limited, hindering functional research. Thus, summarizing such methods is necessary to promote further functional research. This article introduces the structural characteristics and reported biological functions of protein N-phosphorylation, reviews the protein N-phosphorylation modification enrichment methods developed over the past two decades, and analyzes the advantages and disadvantages of each method. In this study, both antibody-based and nonantibody-dependent methods are described in detail. Owing to the stability of the molecular structure of histidine, the antibody method is currently limited to histidine phosphorylation enrichment research. Future studies will focus on the development of new enrichment ligands. Moreover, research on ligands will promote studies on other nonconventional phosphorylation targets, such as two acyl-phosphates (pAsp, pGlu) and S-phosphate (pCys). In summary, this review provides a detailed analysis of the history and development directions of N-phosphorylation enrichment methods.


Asunto(s)
Procesamiento Proteico-Postraduccional , Fosforilación , Humanos , Proteómica/métodos , Proteínas/química , Proteínas/metabolismo , Espectrometría de Masas
20.
Se Pu ; 42(7): 721-729, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-38966980

RESUMEN

Lysine (K) is widely used in the design of lysine-targeted crosslinkers, structural elucidation of protein complexes, and analysis of protein-protein interactions. In "shotgun" proteomics, which is based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), proteins from complex samples are enzymatically digested, generating thousands of peptides and presenting significant challenges for the direct analysis of K-containing peptides. In view of the lack of effective methods for the enrichment of K-containing peptides, this work developed a method which based on a hydrophobic-tag-labeling reagent C10-S-S-NHS and reversed-phase chromatography (termed as HYTARP) to achieve the efficient enrichment and identification of K-containing peptides from complex samples. The C10-S-S-NHS synthesized in this work successfully labeled standard peptides containing various numbers of K and the labeling efficiency achieved up to 96% for HeLa cell protein tryptic digests. By investigating the retention behavior of these labeled peptides in C18 RP column, we found that most K-labeled peptides were eluted once when acetonitrile percentage reached 57.6% (v/v). Further optimization of the elution gradient enabled the efficient separation and enrichment of the K-labeled peptides in HeLa digests via a stepwise elution gradient. The K-labeled peptides accounted for 90% in the enriched peptides, representing an improvement of 35% compared with the number of peptides without the enrichment. The dynamic range of proteins quantified from the enriched K-containing peptides spans 5-6 orders of magnitude, and realized the detection of low-abundance proteins in the complex sample. In summary, the HYTARP strategy offers a straightforward and effective approach for reducing sample complexity and improving the identification coverage of K-containing peptides and low-abundance proteins.


Asunto(s)
Cromatografía de Fase Inversa , Interacciones Hidrofóbicas e Hidrofílicas , Lisina , Péptidos , Cromatografía de Fase Inversa/métodos , Lisina/química , Péptidos/química , Péptidos/análisis , Humanos , Células HeLa , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA