Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124393, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723463

RESUMEN

Herein, iron modified hydrogen-bonded organic framework (Fe-HOF) was successfully prepared by introducing the yellow-green fluorescent ligand 2,5-dihydroxyterephthalic acid into HOF and then modifying Fe3+. A simple turn-on fluorescence strategy is proposed for the detection of ascorbic acid (AA) based on Fe-HOF. Fe3+ could effectively quench fluorescence emission of HOF. In the presence of AA, Fe3+ was reduced to Fe2+, which led to the fluorescence recovery of HOF, thus realizing the fluorescence quantitative detection of AA. These fluorescence responsive behaviors of Fe-HOF ensure fluorescence assay of AA within 0.5 - 8 µM, along with a limit of detection (LOD) of 0.14 µM. The sensing platform could realize the rapid detection of ascorbic acid in vitamin C pills, tablets and beverages in the detection of ascorbic acid with good recoveries.

2.
Talanta ; 272: 125809, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382300

RESUMEN

The freshness of sea food has always been the focus of attention from consumers, and food-safety issues are in urgent need of efficient approaches. A HOF-based ratiometric fluorescence probe (HOF-FITC/Eu) featuring superior amine-response, offers the real-time and visual detection of seafood freshness. Via intermolecular hydrogen bond interaction to form hydrogen-bonded organic frameworks (HOFs), which serve as a structural basis for the conjugate loading of pH-sensitive fluorescein (5-FITC) and coordination doping of lanthanide Eu3+. Amine vapors stimulate the dual-wavelength (525 nm and 616 nm) characteristic fluorescence of HOF-FITC/Eu with an inverse trend, resulting in an increase of the ratio of I525 to I616 accompanied by a distinct color transition from red to green. Prepared HOF-FITC/Eu featuring sensitive red-green color change characteristics of amine response are readily dripped into composite films of filter paper through integrated smartphone and 254 nm UV lamp as mobile observation devices to on-site monitor the freshness of raw fish and shrimp samples. The intelligent food probe HOF-FITC/Eu opens a novel material assembly type for fluorescence sensing and a potential pathway for other functional materials in the field of investigational food.

3.
J Sep Sci ; 47(1): e2300576, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38117985

RESUMEN

The level of vitamin B group in human serum is an important index of human health. Among B vitamins, cyanocobalamin in serum is unstable and its content is extremely low. Rapid and simultaneous detection of multiple B vitamins including cyanocobalamin is a challenge. Herein, we have developed a rapid and stable method that can realize the determination of thiamine, riboflavin, nicotinamide, pantothenic acid, pyridoxic acid, biotin, 5-methyltetrahydrofolate, and cyanocobalamin simultaneously in 6 min. The method was established based on protein precipitation with methanol and then chromatographic separation was achieved using Waters acquity ultra-high-performance liquid chromatography high strength silica T3 column, which was stable and sensitive especially for cyanocobalamin. Limit of quantification, precision, trueness, and matrix effect were validated according to the European Medicines Agency and United States Food and Drug guidelines and Clinical and Laboratory Standards Institute guidelines on bioanalytical method. The limit of quantification for thiamine, riboflavin, nicotinamide, pantothenic acid, pyridoxic acid, biotin, 5-methyltetrahydrofolate, and cyanocobalamin was 0.4, 0.4, 0.8, 2.0, 0.4, 0.1, 0.4, and 0.04 ng/mL separately, respectively. Intra- and interday precisions were 1.1%-12.4% and 2.0%-13.5%, respectively. The relative errors were between 0.3% and 13.3%, and the matrix effects were between 2.6% and 10.4%.


Asunto(s)
Complejo Vitamínico B , Humanos , Ácido Pantoténico/análisis , Biotina/análisis , Espectrometría de Masas en Tándem/métodos , Ácido Piridóxico , Cromatografía Liquida/métodos , Tiamina/análisis , Riboflavina/análisis , Niacinamida/análisis , Vitamina B 12/análisis , Cromatografía Líquida de Alta Presión/métodos , Vitamina A/análisis , Vitamina K/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA