Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.101
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 221-229, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095159

RESUMEN

Polychlorinated naphthalenes (PCNs) are detrimental to human health and the environment. With the commercial production of PCNs banned, unintentional releases have emerged as a significant environmental source. However, relevant information is still scarce. In this study, provincial emissions for eight PCNs homologues from 37 sources in the Chinese mainland during the period of 1960-2019 were estimated based on a source-specific and time-varying emission factor database. The results showed that the total PCNs emissions in 2019 reached 757.0 kg with Hebei ranked at the top among all the provinces and iron & steel industry as the biggest source. Low-chlorinated PCNs comprised 90% of emissions by mass, while highly chlorinated PCNs dominated in terms of toxicity, highlighting divergent priorities for mitigating emissions and safeguarding human health. The emissions showed an overall upward trend from 1960 to 2019 driven by emission increase from iron & steel industry in terms of source, and from North China and East China in terms of geographic area. Per-capita emissions followed an inverted U-shaped environmental Kuznets curve while emission intensities decreased with increasing per-capita Gross Domestic Product (GDP) following a nearly linear pattern when log-transformed.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Naftalenos , China , Naftalenos/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos
2.
Genes Immun ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242755

RESUMEN

Penile squamous cell carcinoma (PSCC) is becoming increasingly common and posing a severe threat to men's health, particularly in developing countries. The function of long non-coding RNAs (lncRNAs) in PSCC progression remains mysterious. Therefore, we explored the significance of lncRNAs in the competing endogenous RNA (ceRNA) network in PSCC tumor progression. The 5 healthy and 6 tumor tissue samples were subjected to lncRNA sequencing. Using miRcode, LncBase, miRTarBase, miRWalk, and TargetScan, we constructed a ceRNA network of differentially expressed lncRNAs, miRNAs, and mRNAs. Our analysis resulted in a ceRNA network consisting of 4 lncRNAs, 18 miRNAs, and 38 mRNAs, whose upstream regulators, the lncRNAs MIR205HG, MIAT, HCP5, and PVT1, were all elevated in PSCC. Immunohistochemical staining confirmed that cell proliferation-related genes TFAP2C, MKI67, and TP63, positively regulated by 4 lncRNAs, were considerably overexpressed in tumor tissues. Immune analysis revealed a significant upregulation in macrophage and exhausted T cell infiltration in PSCC. Our study identified a lncRNA-miRNA-mRNA ceRNA network for PSCC, revealing possible molecular mechanisms involved in the regulation of PSCC progression by key lncRNAs and their connections to the immunosuppressive tumor microenvironment. The ceRNA network provides a novel perspective for elucidating the pathogenesis of PSCC.

3.
Int J Biol Macromol ; 280(Pt 2): 135720, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299412

RESUMEN

Atrazine (ATR), a commonly used herbicide, carries a risk to the health of humans and animals due to its persistence in the environment and accumulation in the body. The main metabolic processes of ATR was occurred in the liver. Therefore, the accumulation of ATR in the body can cause serious hepatic injury. This research aimed to clarify the toxicological effect of ATR and explore the potential protective benefits of selenium-enriched yeast (Yeast-Se) in alleviating liver toxicity induced by ATR. Quails were treated with ATR and Yeast-Se for 28 days. The results indicated that ATR inhibited quail growth and development and caused liver dysfunction. Pathological analysis showed that ATR led to central vein congestion and gallbladder epithelial cells shedding and necrosis. In addition, ATR significantly changed hepatic ion content (Na+, K+, Cl-, Ca2+, Mg2+) and decreased Na+-K+-ATPase and Ca2+/Mg2+-ATPase activities. Notably, supplementary Yeast-Se protects against ATR-induced liver ionic disorder by reversing ATPase activity and increasing ATPase subunits expression. In addition, supplementary Yeast-Se significantly up-regulated the expression of aquaporins (AQPs). In summary, these results indicated that Yeast-Se may regulates AQPs to alleviate ATR-induced ionic homeostasis disturbance in liver.

4.
Microbiome ; 12(1): 177, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300532

RESUMEN

BACKGROUND: Intake of dietary fiber is associated with a reduced risk of inflammatory bowel disease. ß-Glucan (BG), a bioactive dietary fiber, has potential health-promoting effects on intestinal functions; however, the underlying mechanism remains unclear. Here, we explore the role of BG in ameliorating colitis by modulating key bacteria and metabolites, confirmed by multiple validation experiments and loss-of-function studies, and reveal a novel bacterial cross-feeding interaction. RESULTS: BG intervention ameliorates colitis and reverses Lactobacillus reduction in colitic mice, and Lactobacillus abundance was significantly negatively correlated with the severity of colitis. It was confirmed by further studies that Lactobacillus johnsonii was the most significantly enriched Lactobacillus spp. Multi-omics analysis revealed that L. johnsonii produced abundant indole-3-lactic acid (ILA) leading to the activation of aryl hydrocarbon receptor (AhR) responsible for the mitigation of colitis. Interestingly, L. johnsonii cannot utilize BG but requires a cross-feeding with Bacteroides uniformis, which degrades BG and produces nicotinamide (NAM) to promote the growth of L. johnsonii. A proof-of-concept study confirmed that BG increases L. johnsonii and B. uniformis abundance and ILA levels in healthy individuals. CONCLUSIONS: These findings demonstrate the mechanism by which BG ameliorates colitis via L. johnsonii-ILA-AhR axis and reveal the important cross-feeding interaction between L. johnsonii and B. uniformis. Video Abstract.


Asunto(s)
Bacteroides , Colitis , Indoles , Lactobacillus johnsonii , beta-Glucanos , Animales , Indoles/metabolismo , Ratones , Colitis/microbiología , Colitis/terapia , beta-Glucanos/metabolismo , Bacteroides/metabolismo , Humanos , Lactobacillus johnsonii/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Femenino , Lactobacillus/metabolismo
5.
Infect Dis (Lond) ; : 1-11, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264585

RESUMEN

OBJECTIVE: Accurate and rapid identification of causative pathogens is essential to guide the clinical management of lower respiratory tract infections (LRTIs). Here we conducted a single-centre prospective study in 284 patients suspected of lower respiratory tract infections to evaluate the utility of a nucleic acid test based on highly multiplexed polymerase chain reaction (PCR) and CRISPR-Cas12a. METHODS: We determined the analytical and diagnostic performance of the CRISPR assay using a combination of reference standards, including conventional microbiological tests (CMTs), metagenomic Next-Generation Sequencing (mNGS), and clinical adjudication by a panel of experts on infectious diseases and microbiology. RESULTS: The CRISPR assay showed a higher detection rate (63.0%) than conventional microbiological tests (38.4%) and was lower than metagenomic Next-Generation Sequencing (72.9%). In detecting polymicrobial infections, the positivity rate of the CRISPR assay (19.4%) was higher than conventional microbiological tests (3.5%) and lower than metagenomic Next-Generation Sequencing (28.9%). The overall diagnostic sensitivity of the CRISPR assay (67.8%) was higher than conventional microbiological tests (41.8%), and lower than metagenomic Next-Generation Sequencing (93.2%). CONCLUSIONS: Considering the low cost, ease of operation, short turnaround time, and broad range of pathogens detected in a single test, the CRISPR assay has the potential to be implemented as a screening tool for the aetiological diagnosis of lower respiratory tract infections patients, especially in cases where atypical bacteria or coinfections are suspected.

6.
Int J Paediatr Dent ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255508

RESUMEN

BACKGROUND: Vital pulp therapy is gaining traction in dental practice, especially for young patients. AIM: To evaluate the outcomes of partial pulpotomy in permanent molars of children diagnosed with irreversible pulpitis (IP) using iRoot BP Plus. DESIGN: A total of 94 permanent molars in 88 patients, aged 6-15 years, with symptoms of IP, were treated with partial pulpotomy, using iRoot BP Plus as the pulp capping agent. The treated teeth underwent clinical and radiographic assessments at 1, 6, 12, 18, and 24 months postoperative. The outcomes were determined based on clinical and radiographic criteria by calibrated examiners. RESULTS: The success rates were 98.4% (63/64), 93.2% (41/44), and 89.7% (26/29) at the 6-month, 12-month, and 24-month follow-up. By the end of this study, the median follow-up period was 15.1 months, and the estimated survival rate was 95.2% at 24 months. Gender, root maturity, and number of missing walls had no significant effect on success rates. Six molars were failed, and root canal therapy (RCT) was applied. CONCLUSIONS: Partial pulpotomy for permanent molars with IP in young patients using iRoot BP Plus as pulp capping material achieved high success. This method presents a viable alternative to apexification and RCT for treating vital, inflamed molars with IP in children.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125179, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39316854

RESUMEN

Among all kinds of chemical warfare agents, only cyanide and nerve agents can cause massive mortality at low concentrations. In this work, a dual-channel fluorescent probe CWAs-Thia capable of detecting cyanide and nerve agents is presented. The two reactive recognition units, pyridine and the thiazole-2-carbonyl group, of the probe for cyanide and nerve agents, respectively, produced red and blue fluorescent responses, respectively, which were attributed to excited-state intramolecular proton transfer and intramolecular charge transfer. CWAs-Thia is the first probe that can selectively recognize cyanide and nerve agent. And it has proven to be effective in visualizing cyanide and nerve agents in living cells.

8.
J Agric Food Chem ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321038

RESUMEN

Delayed thrombolytic therapy with tissue plasminogen activator (tPA), the only FDA-approved drug for ischemic stroke, can cause catastrophic hemorrhagic transformation (HT) after ischemic stroke. However, it remains largely unknown how microglial polarization dynamically changes in HT. Poria cocos is a widely used functional edible fungus in Asia and has been used for more than 2000 years as a food and medicine in China. Our preliminary study found that P. cocos extract (PCE) significantly reduced the volume of cerebral infarction. We performed the effects of PCE on tPA-induced HT in rat models of autologous thromboembolism middle cerebral artery occlusion in vivo and BV-2 cells injured by oxygen-glucose deprivation/reperfusion in vitro. Hemorrhage test and triphenyltetrazolium chloride staining were performed to examine the efficiency of PCE. The expression level of proteins associated with microglia polarization was detected using Western blotting and immunofluorescence staining. Small interfering RNA transfection reveals the regulatory mechanism of PCE on microglia polarization. PCE plus tPA reduced hemorrhage and infarct volumes after ischemic stroke. During tPA-induced HT, M1 microglia increased over time from 3 days onward and remained high for at least 7 days, reaching the peak at 7 days, M2 microglia gradually increased after 3 days and continued to increase for at least 14 days. Furthermore, PCE inhibited the secretion of pro-inflammatory cytokines in M1 microglia and improved the secretion of anti-inflammatory cytokines in M2 microglia, which related to the regulation of the IRF5-IRF4 axis. This current study indicates that PCE alleviates tPA-induced HT after ischemic stroke by modulating microglia M1/M2 phenotype polarization.

9.
Biomed Pharmacother ; 179: 117382, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39241565

RESUMEN

Stroke has emerged as the primary cause of disability and death globally in recent years. Intracerebral hemorrhage (ICH), a particularly severe kind of stroke, is occurring in an increasing number of people. The two main clinical treatments for ICH now in use are conservative pharmaceutical therapy and surgical intervention, both of which have risks and drawbacks. Consequently, it is crucial to look into the pathophysiology of ICH and consider cutting-edge therapeutic approaches. Recent research has revealed that pyroptosis is a newly identified type of cell death distinguished by the break of the cell membrane and the discharge of pro-inflammatory substances through different routes. Following ICH, glial cells experience pyroptosis, which worsens neuroinflammation. Hence, the onset and progression of ICH are strongly linked to pyroptosis, which is facilitated by different inflammasomes. It is essential to conduct a comprehensive investigation of ICH damage processes and uncover new targets for treatment. The impact and function of pyroptosis in ICH, as well as the activation and regulation of inflammasomes and their mediated pyroptosis pathways will be fully discussed in this review.


Asunto(s)
Hemorragia Cerebral , Inmunidad Innata , Inflamasomas , Piroptosis , Piroptosis/efectos de los fármacos , Humanos , Inflamasomas/metabolismo , Inflamasomas/inmunología , Hemorragia Cerebral/inmunología , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Animales , Inmunidad Innata/efectos de los fármacos , Transducción de Señal
10.
J Adv Res ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322048

RESUMEN

INTRODUCTION: Antifungal peptides (AFPs) have the potential to treat antifungal-resistant infections; however, their structure-function relationship remains unknown, hindering their rapid development. Therefore, it is imperative to investigate and clarify the structure-function relationships of AFPs. OBJECTIVES: This study aimed to investigate the impact of end-tagging single hydrophobic amino acids and capping the N-terminus with glycine (Gly) on the antifungal activity of peptide W4. METHODS: The antifungal efficacy of the engineered peptides was initially assessed by determining the minimum inhibitory concentration (MIC) /minimal fungicidal concentration (MFC), killing kinetics, and drug resistance induction, in addition to evaluating the biocompatibility and stability. Subsequently, the antifungal mechanism was investigated using fluorescence labeling, electron microscopy, reactive oxygen species (ROS) detection, and measurement of mitochondrial membrane potential and apoptosis. The impact of the engineered peptides on Candida albicans (C. albicans) biofilm and their potential application in the scratch keratomycosis model were investigated. RESULTS: The antifungal activity of W4 was significantly enhanced by capping Gly at the N-terminus, resulting in a decrease in average activity from 11.86 µM to 6.25 µM (GW4) and an increase in TI values by 1.9-fold (TIGW4 = 40.99). Mechanistically, GW4 exerted its antifungal effect by disrupting the cellular membrane structure in C. albicans, forming pores and subsequent leakage of intracellular contents. Concurrently, it facilitated intracellular ROS accumulation while decreasing the mitochondrial membrane potential. Additionally, GW4 demonstrated an excellent ability to inhibit and eliminate biofilms of C. albicans. Notably, GW4 demonstrated significant therapeutic potential in a C. albicans-associated keratitis model. CONCLUSION: Capping Gly at the N-terminus increased residue length while significantly enhancing the helical propensity of W4, thereby augmenting its antifungal activity. Our exploratory study demonstrated the potential strategies and avenues for optimizing the structure-function relationships of AFPs and developing highly effective antifungal drugs.

11.
Exp Cell Res ; : 114256, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299482

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a serious cardiopulmonary disease with significant morbidity and mortality. Vascular obstruction leads to a continuous increase in pulmonary vascular resistance, vascular remodeling, and right ventricular hypertrophy and failure, which are the main pathological features of PH. Currently, the treatments for PH are very limited, so new methods are urgently needed. Msenchymal stem cells-derived exosomes have been shown to have significant therapeutic effects in PH, however, the the mechanism still very blurry. Here, we investigated the possible mechanism by which umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-EXO) inhibited monocrotaline (MCT)-induced pulmonary vascular remodeling in a rat model of PH by regulating the NF-κB/BMP signaling pathway. Our data revealed that hUC-MSC-EXO could significantly attenuate MCT-induced PH and right ventricular hypertrophy. Moreover, the protein expression level of BMPR2, BMP-4, BMP-9 and ID1 was significantly increased, but NF-κB p65, p-NF-κB-p65 and BMP antagonists Gremlin-1 was increased in vitro and vivo. Collectively, this study revealed that the mechanism of hUC-MSC-EXO attenuates pulmonary hypertension may be related to inhibition of NF-κB signaling to further activation of BMP signaling. The present study provided a promising therapeutic strategy for PH vascular remodeling.

12.
Eur J Pharmacol ; 982: 176825, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39159715

RESUMEN

BACKGROUND: Human neutrophil elastase (HNE) is an important contributor to lung diseases such as acute lung injury (ALI) or acute respiratory distress syndrome. Therefore, this study aimed to identify natural HNE inhibitors with anti-inflammatory activity through machine learning algorithms, in vitro assays, molecular dynamic simulation, and an in vivo ALI assay. METHODS: Based on the optimized Discovery Studio two-dimensional molecular descriptors, combined with different molecular fingerprints, six machine learning models were established using the Naïve Bayesian (NB) method to identify HNE inhibitors. Subsequently, the optimal model was utilized to screen 6925 drug-like compounds obtained from the Traditional Chinese Medicine Systems Pharmacy Database and Analysis Platform (TCMSP), followed by ADMET analysis. Finally, 10 compounds with reported anti-inflammatory activity were selected to determine their inhibitory activities against HNE in vitro, and the compounds with the best activity were selected for a 100 ns molecular dynamics simulation and its anti-inflammatory effect was evaluated using Poly (I:C)-induced ALI model. RESULTS: The evaluation of the in vitro HNE inhibition efficiency of the 10 selected compounds showed that the flavonoid tricetin had the strongest inhibitory effect on HNE. The molecular dynamics simulation indicated that the binding of tricetin to HNE was relatively stable throughout the simulation. Importantly, in vivo experiments indicated that tricetin treatment substantially improved the Poly (I:C)-induced ALI. CONCLUSION: The proposed NB model was proved valuable for exploring novel HNE inhibitors, and natural tricetin was screened out as a novel HNE inhibitor, which was confirmed by in vitro and in vivo assays for its inhibitory activities.


Asunto(s)
Elastasa de Leucocito , Simulación de Dinámica Molecular , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/metabolismo , Humanos , Animales , Masculino , Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/química , Evaluación Preclínica de Medicamentos , Productos Biológicos/farmacología , Productos Biológicos/química , Ratones , Aprendizaje Automático
13.
Clin Respir J ; 18(8): e13819, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118429

RESUMEN

BACKGROUND: Small cell lung cancer (SCLC) is a highly aggressive tumor with limited effectiveness in its standard chemotherapy treatment. Targeted antiangiogenic therapy and immune checkpoint inhibitors (ICIs) have demonstrated potential as alternative treatments for extensive-stage SCLC (ES-SCLC). However, there is insufficient comparative evidence available to determine the optimal first-line treatment option between ICIs plus chemotherapy and targeted antiangiogenic therapy plus chemotherapy. OBJECTIVE: This study is aimed at analyzing clinical data from ES-SCLC patients treated at the First Affiliated Hospital of Bengbu Medical College between June 2021 and June 2023. The study compared the efficacy and safety of three first-line treatment regimens: standard chemotherapy, antiangiogenic therapy combined with chemotherapy, and immune combination therapy. METHODS: Patients who met the inclusion criteria were divided into three groups: chemotherapy, immune combination therapy, and antiangiogenic therapy combined with chemotherapy. The study collected data on clinical characteristics, treatment regimens, and adverse reactions. The analysis included objective response rate (ORR), duration of response (DoR), disease control rate (DCR), progression-free survival (PFS), and treatment safety. RESULTS: A total of 101 patients were included in the study, with 49 receiving chemotherapy alone, 19 receiving antiangiogenic therapy, and 33 receiving immune combination therapy. The ORRs were 78.9% for antiangiogenic therapy, 72.7% for immune combination therapy, and 42.9% for chemotherapy alone. The median PFS was 8.0 months for antiangiogenic therapy, 7.8 months for immune combination therapy, and 5.2 months for chemotherapy alone. Both combination therapy groups demonstrated superior efficacy compared to chemotherapy alone. CONCLUSION: Targeted combined chemotherapy and immune combination chemotherapy showed superior efficacy as first-line treatments for ES-SCLC compared to chemotherapy alone, with manageable adverse reactions.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Inmunoterapia , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Masculino , Femenino , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Persona de Mediana Edad , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Estadificación de Neoplasias , Adulto , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/efectos adversos , Resultado del Tratamiento , Estudios Retrospectivos , Terapia Molecular Dirigida/métodos
14.
Science ; 385(6708): 533-538, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088622

RESUMEN

To achieve the full potential of monolithic perovskite/silicon tandem solar cells, crystal defects and film inhomogeneities in the perovskite top cell must be minimized. We discuss the use of methylenediammonium dichloride as an additive to the perovskite precursor solution, resulting in the incorporation of in situ-formed tetrahydrotriazinium (THTZ-H+) into the perovskite lattice upon film crystallization. The cyclic nature of the THTZ-H+ cation enables a strong interaction with the lead octahedra of the perovskite lattice through the formation of hydrogen bonds with iodide in multiple directions. This structure improves the device power conversion efficiency (PCE) and phase stability of 1.68 electron volts perovskites under prolonged light and heat exposure under 1-sun illumination at 85°C. Monolithic perovskite/silicon tandems incorporating THTZ-H+ in the perovskite photo absorber reached a 33.7% independently certified PCE for a device area of 1 square centimeter.

15.
BMJ Open ; 14(8): e083158, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187279

RESUMEN

BACKGROUND: Obesity is a major public health issue in China and around the world. While acupuncture is often used in clinical practice, there is a lack of conclusive evidence for its weight-loss effect. Thus we will conduct a parallel, randomised, sham-controlled trial to evaluate the efficacy and safety of acupuncture for treating obesity. METHODS AND ANALYSIS: A total of 160 eligible participants with obesity will be randomly assigned to the verum acupuncture group or sham acupuncture group at a ratio of 1:1. All participants will be treated three times a week for a duration of 12 weeks, and followed up for another 16 weeks. The primary outcome is the percentage change in body weight from baseline to Week 12. The secondary outcomes include body mass index (BMI), waist circumference (WC), body fat percentage (BF%), blood pressure, fasting blood glucose, insulin, glycosylated haemoglobin A1c, blood lipids, and physical functioning score on the Short Form 36 Health Survey. Other secondary outcomes including psychological and social functions will also be evaluated using the body image scale, psychological function scale, and social function scale of the BODY-Q, Rosenberg Self-Esteem Scale, Patient Health Questionnaire-9, and Dutch Eating Behaviour Questionnaire. BMI, WC, BF% and blood pressure will be evaluated at Week 0, 4, 8, 12 and 28. Other secondary outcomes will be measured at Week 0, 12 and 28, respectively. Adverse events will be recorded in detail during the trial. ETHICS AND DISSEMINATION: Ethical approval of this trial was granted by the Ethics Committee of Chengdu Sport University (2023-102). Written informed consent will be obtained from study participants before enrolment. The findings will be disseminated through peer-reviewed journals. TRIAL REGISTRATION NUMBER: Chinese Clinical Trial Registry (ChiCTR2200062092).


Asunto(s)
Terapia por Acupuntura , Índice de Masa Corporal , Obesidad , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Obesidad/terapia , Terapia por Acupuntura/métodos , Adulto , Femenino , Masculino , Circunferencia de la Cintura , Persona de Mediana Edad , Pérdida de Peso , Adulto Joven , China , Glucemia/metabolismo , Glucemia/análisis , Presión Sanguínea , Resultado del Tratamiento
16.
Artículo en Inglés | MEDLINE | ID: mdl-39027983

RESUMEN

Panax notoginseng has the effect of stimulating circulation to end stasis. Our study was designed to evaluate the anti-thrombotic effect of protoparaxotriol saponins (PTS) from Panax notoginseng and the involved mechanisms. A thrombosis model was constructed, and the anti-thrombotic activity of PTS was determined by erythrocyte staining, heart rate, and blood flow velocity. In addition, quantitative real-time polymerase chain reaction (qPCR) was used to identify changes in the expression of genes related to coagulation, inflammation, and apoptosis. PTS alleviated arachidonic acid (AA)-induced caudal vein thrombosis, restored blood flow, and increased the area of cardiac erythrocyte staining, heart rate and blood flow velocity. It reduced the ponatinib-induced cerebral thrombus area and decreased the intensity of erythrocyte staining. The qPCR data showed that the anti-thrombotic effect of PTS was mediated by suppression of genes related to coagulation, inflammation and apoptosis, and also involved inhibition of NF-κB and PI3K/Akt pathways.

17.
Cell Death Dis ; 15(7): 484, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969639

RESUMEN

An increasing evidence supports that cell competition, a vital selection and quality control mechanism in multicellular organisms, is involved in tumorigenesis and development; however, the mechanistic contributions to the association between cell competition and tumor drug resistance remain ill-defined. In our study, based on a contructed lenvitinib-resistant hepatocellular carcinoma (HCC) cells display obvious competitive growth dominance over sensitive cells through reprogramming energy metabolism. Mechanistically, the hyperactivation of BCL2 interacting protein3 (BNIP3) -mediated mitophagy in lenvatinib-resistant HCC cells promotes glycolytic flux via shifting energy production from mitochondrial oxidative phosphorylation to glycolysis, by regulating AMP-activated protein kinase (AMPK) -enolase 2 (ENO2) signaling, which perpetually maintaining lenvatinib-resistant HCC cells' competitive advantage over sensitive HCC cells. Of note, BNIP3 inhibition significantly sensitized the anti-tumor efficacy of lenvatinib in HCC. Our findings emphasize a vital role for BNIP3-AMPK-ENO2 signaling in maintaining the competitive outcome of lenvitinib-resistant HCC cells via regulating energy metabolism reprogramming; meanwhile, this work recognizes BNIP3 as a promising target to overcome HCC drug resistance.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Metabolismo Energético , Neoplasias Hepáticas , Proteínas de la Membrana , Mitofagia , Compuestos de Fenilurea , Quinolinas , Humanos , Quinolinas/farmacología , Mitofagia/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Proteínas de la Membrana/metabolismo , Metabolismo Energético/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Línea Celular Tumoral , Proteínas Proto-Oncogénicas/metabolismo , Ratones , Ratones Desnudos , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos BALB C , Reprogramación Metabólica
18.
Artículo en Inglés | MEDLINE | ID: mdl-39008351

RESUMEN

Two pink-pigmented bacteria, designated strains NEAU-140T and NEAU-KT, were isolated from field soil collected from Linyi, Shandong Province, PR China. Both isolates were aerobic, Gram-stain-negative, rod-shaped, and facultatively methylotrophic. 16S rRNA gene sequences analysis showed that these two strains belong to the genus Methylobacterium. Strain NEAU-140T exhibited high 16S rRNA gene sequence similarities to Methylobacterium radiotolerans NBRC 15690T (97.43 %) and Methylobacterium phyllostachyos NBRC 105206T (97.36 %). Strain NEAU-KT exhibited high 16S rRNA gene sequence similarities to M. phyllostachyos NBRC 105206T (99.00 %) and Methylobacterium longum DSM 23933T (98.72 %). A phylogenetic tree based on 16S rRNA gene sequences showed that strain NEAU-140T formed a clade with Methylobacterium aerolatum (95.94 %), Methylobacterium persicinum (95.66 %) and Methylobacterium komagatae (96.87 %), and strain NEAU-KT formed a cluster with M. phyllostachyos and M. longum. The predominant fatty acid in both strains was C18 : 1 ω7c. Both strains contained ubiquinone Q-10 as the only respiratory quinone. The polar lipid profiles of both strains contained diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. Whole-genome phylogeny showed that strains NEAU-140T and NEAU-KT formed a phyletic line with M. aerolatum, M. persicinum, Methylobacterium radiotolerans, Methylobacterium fujisawaense, Methylobacterium oryzae, Methylobacterium tardum, M. longum and M. phyllostachyos. The orthologous average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain NEAU-140T and its closely related strains were lower than 82.62 and 25.90  %, respectively. The ANI and dDDH values between strain NEAU-KT and its closely related strains were lower than 86.29 and 31.7 %, respectively. The genomic DNA G+C contents were 71.63 mol% for strain NEAU-140T and 69.08 mol% for strain NEAU-KT. On the basis of their phenotypic and phylogenetic distinctiveness and the results of dDDH and ANI hybridization, these two isolates represent two novel species within the genus Methylobacterium, for which the names Methylobacterium amylolyticum sp. nov. (type strain NEAU-140T=MCCC 1K08801T=DSM 110568T) and Methylobacterium ligniniphilum sp. nov. (type strain NEAU-KT=MCCC 1K08800T=DSM 110567T) are proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Methylobacterium , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , Methylobacterium/genética , Methylobacterium/clasificación , Methylobacterium/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/análisis , China , Ubiquinona , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis
19.
J Cell Biochem ; : e30632, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014931

RESUMEN

Bronchopulmonary dysplasia (BPD) is a serious disease that occurs in premature and low-birth-weight infants. In recent years, the incidence of BPD has not decreased, and there is no effective treatment for it. Oridonin (Ori) is a traditional Chinese medicine with a wide range of biological activities, especially pharmacological and anti-inflammatory. It is well known that inflammation plays a key role in BPD. However, the therapeutic effect of Ori on BPD has not been studied. Therefore, in the present study, we will observe the anti-inflammatory activity of Ori in an experimental animal model of BPD. Here, we showed that Ori could significantly decrease hyperoxia-induced alveolar injury, inhibit neutrophil recruitment, myeloperoxidase concentrations, and release inflammatory factors in BPD neonatal rats. Taken together, the experimental results suggested that Ori can significantly improve BPD in neonatal rats by inhibiting inflammatory response.

20.
Res Sq ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39070649

RESUMEN

Genetic risks for substance use disorders (SUDs) are due to both SUD-specific and SUD-shared genes. We performed the largest multivariate analyses to date to search for SUD-shared genes using samples of European (EA), African (AA), and Latino (LA) ancestries. By focusing on variants having cross-SUD and cross-ancestry concordant effects, we identified 45 loci. Through gene-based analyses, gene mapping, and gene prioritization, we identified 250 SUD-shared genes. These genes are highly expressed in amygdala, cortex, hippocampus, hypothalamus, and thalamus, primarily in neuronal cells. Cross-SUD concordant variants explained ~ 50% of the heritability of each SUD in EA. The top 5% individuals having the highest polygenic scores were approximately twice as likely to have SUDs as others in EA and LA. Polygenic scores had higher predictability in females than in males in EA. Using real-world data, we identified five drugs targeting identified SUD-shared genes that may be repurposed to treat SUDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA