Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 249: 116345, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38986348

RESUMEN

Ophiocordyceps xuefengensis (O. xuefengensis), the sister taxon of Ophiocordyceps sinensis (O. sinensis), is consumed as a "tonic food" due to its health benefits. However, little is known regarding the chemistry and bioactivity of O. xuefengensis. In this study, we characterized 80 indole-based alkaloids in the ethyl acetate fraction of O. xuefengensis by high performance liquid chromatography-quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS), of which 54 indole-based alkaloids were identified as possibly new compounds. Furthermore, 29 of these compounds were established as potential anti-cancer compounds by ligand fishing combined with HPLC-Q-TOF-MS/MS. Moreover, molecular docking identified the NH- and OH- groups of these compounds as the key active groups. The present study has expanded the knowledge on the characteristic indole-based alkaloids and anti-cancer activity of O. xuefengensis.

2.
Arch Microbiol ; 206(8): 359, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033087

RESUMEN

In this experiment, the eutrophication system was established by adding sucrose and yeast powder, and the pH and dissolved oxygen were measured in a bioreactor in real time to study the effect of aerobic environment on the fermentation process of Polygonati Rhizoma extract by Lactiplantibacillus plantarum. To further analyze metabolic changes, UPLC-Q-Exactive MS was used for metabolomic analysis and metabolic profiling. Multivariate analysis was performed using principal component analysis and Orthogonal projections to latent structures discriminant analysis. Finally, 313 differential metabolites were selected, 196 of which were annotated through database matching. After fermentation, the content of short-chain fatty acids, lactic acid, and their derivatives increased significantly, and there were 13 kinds and 4 kinds, respectively. Both compounds and their derivatives are beneficial to the intestinal flora. Consequently, incorporating L. plantarum into the aerobic fermentation process of Polygonati Rhizoma extract within the eutrophic system is potentially advantageous in enhancing the impact of its fermentation solution on the gut microbiota and its effects on human health. Our findings for this kind of edible and medicinal material research and development offer useful insights.


Asunto(s)
Fermentación , Lactobacillus plantarum , Polygonatum , Rizoma , Polygonatum/química , Polygonatum/metabolismo , Rizoma/química , Lactobacillus plantarum/metabolismo , Eutrofización , Extractos Vegetales/metabolismo , Extractos Vegetales/química , Ácido Láctico/metabolismo , Ácidos Grasos Volátiles/metabolismo , Reactores Biológicos/microbiología , Microbioma Gastrointestinal , Metabolómica
3.
Drug Des Devel Ther ; 18: 2227-2248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882046

RESUMEN

Purpose: The Baihe Dihuang decoction (BDD) is a representative traditional Chinese medicinal formula that has been used to treat anxiety disorders for thousands of years. This study aimed to reveal mechanisms of anxiolytic effects of BDD with multidimensional omics. Methods: First, 28-day chronic restraint stress (CRS) was used to create a rat model of anxiety, and the open field test and elevated plus maze were used to assess anxiety-like behavior. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining, and immunofluorescence staining were used to evaluate inflammatory response. Besides, 16S rRNA gene sequencing assessed fecal microbiota composition and differential microbiota. Non-targeted metabolomics analysis of feces was performed to determine fecal biomarkers, and targeted metabolomics was used to observe the levels of hippocampus neurotransmitters. Finally, Pearson correlation analysis was used to examine relationships among gut microbiota, fecal metabolites, and neurotransmitters. Results: BDD significantly improved anxiety-like behaviors in CRS-induced rats and effectively ameliorated hippocampal neuronal damage and abnormal activation of hippocampal microglia. It also had a profound effect on the diversity of microbiota, as evidenced by significant changes in the abundance of 10 potential microbial biomarkers at the genus level. Additionally, BDD led to significant alterations in 18 fecal metabolites and 12 hippocampal neurotransmitters, with the majority of the metabolites implicated in amino acid metabolism pathways such as D-glutamine and D-glutamate, alanine, arginine and proline, and tryptophan metabolism. Furthermore, Pearson analysis showed a strong link among gut microbiota, metabolites, and neurotransmitters during anxiety and BDD treatment. Conclusion: BDD can effectively improve anxiety-like behaviors by regulating the gut-brain axis, including gut microbiota and metabolite modification, suppression of hippocampal neuronal inflammation, and regulation of neurotransmitters.


Asunto(s)
Ansiolíticos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Metabolómica , Ratas Sprague-Dawley , Animales , Ratas , Ansiolíticos/farmacología , Medicamentos Herbarios Chinos/farmacología , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Restricción Física , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
4.
Microb Cell Fact ; 23(1): 34, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273342

RESUMEN

BACKGROUND: Squalene epoxidase is one of the rate-limiting enzymes in the biosynthetic pathway of membrane sterols and triterpenoids. The enzyme catalyzes the formation of oxidized squalene, which is a common precursor of sterols and triterpenoids. RESULT: In this study, the squalene epoxidase gene (PcSE) was evaluated in Poria cocos. Molecular docking between PcSE and squalene was performed and the active amino acids were identified. The sgRNA were designed based on the active site residues. The effect on triterpene synthesis in P. cocos was consistent with the results from ultra-high-performance liquid chromatography-quadruplex time-of-flight-double mass spectrometry (UHPLC-QTOF-MS/MS) analysis. The results showed that deletion of PcSE inhibited triterpene synthesis. In vivo verification of PcSE function was performed using a PEG-mediated protoplast transformation approach. CONCLUSION: The findings from this study provide a foundation for further studies on heterologous biosynthesis of P. cocos secondary metabolites.


Asunto(s)
Fitosteroles , Triterpenos , Wolfiporia , Espectrometría de Masas en Tándem/métodos , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Wolfiporia/genética , Wolfiporia/metabolismo , Simulación del Acoplamiento Molecular , Escualeno , Sistemas CRISPR-Cas , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Triterpenos/metabolismo
5.
J Pharm Biomed Anal ; 234: 115533, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37336040

RESUMEN

Polygonatum cyrtonema Hua polysaccharide (PCP) is the main bioactive compound derived from the herb Polygonati Rhizoma, known for its anti-fatigue, antioxidant, immunomodulatory, and anti-inflammatory properties. However, its effectiveness on alleviating chemotherapy-induced muscle atrophy has been unclear. In this study, we utilized proteomic analysis to investigate the effects and mechanisms of PCP on gemcitabine plus cisplatin (GC) induced muscle atrophy in mice. Quality control analysis revealed that the functional PCP, rich in glucose, is a heterogeneous polysaccharide comprised of nine monosaccharides. PCP (64 mg/kg) significantly alleviated body muscle, organ weight loss, and muscle fiber atrophy in chemotherapy-induced cachectic mice. Moreover, PCP suppressed the decrease in serum immunoglobulin levels and the increase in pro-inflammatory factor interleukin-6 (IL-6). Proteomic analysis demonstrated that PCP contributed to the homeostasis of protein metabolism in gastrocnemius muscle. Diacylglycerol kinase (DGKζ) and cathepsin L (CTSL) were identified as primary PCP targets. Furthermore, the IL-6/STAT3/CTSL and DGKζ/FoxO/Atrogin1 signaling pathways were validated. Our findings suggest that PCP exerts an anti-atrophy effect on chemotherapy-induced muscle atrophy by regulating the autophagy-lysosome and ubiquitin-proteasome systems.


Asunto(s)
Antineoplásicos , Polygonatum , Ratones , Animales , Caquexia/inducido químicamente , Caquexia/tratamiento farmacológico , Interleucina-6 , Proteómica , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Cisplatino , Antineoplásicos/efectos adversos
6.
Phytomedicine ; 114: 154775, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990008

RESUMEN

BACKGROUND: Nowadays, diabetic kidney disease (DKD) has become one of the most threatening to the end-stage renal diseases, and the early prevention of DKD is inevitable for Diabetes Mellitus (DM) patients. AIMS: Pyroptosis, a programmed cell death that mediates renal inflammation induced early renal injury. The trimethylamine n-oxide (TMAO) was also an independent risk factor for renal injury. Here, the associations between TMAO-induced pyroptosis and pathogenesis of DKD were studied, and the potential mechanism of Zuogui-Jiangtang-Yishen (ZGJTYS) decoction to prevent DKD was further investigated. METHOD: Using Goto-Kakizaki (GK) rats to establish the early DKD models. The 16S-ribosomal RNA (16S rRNA) sequencing, fecal fermentation and UPLC-MS targeted metabolism techniques were combined to explore the changes of gut-derived TMAO level under the background of DKD and the effects of ZGJTYS. The proximal convoluted tubule epithelium of human renal cortex (HK-2) cells was adopted to explore the influence of pyroptosis regulated by TMAO. RESULTS: It was demonstrated that ZGJTYS could prevent the progression of DKD by regulating glucolipid metabolism disorder, improving renal function and delaying renal pathological changes. In addition, we illustrated that gut-derived TMAO could promote DKD by activating the mROS-NLRP3 axis to induce pyroptosis. Furthermore, besides interfering with the generation of TMAO through gut microbiota, ZGJTYS inhibited TMAO-induced pyroptosis with a high-glucose environment and the underlying mechanism was related to the regulation of mROS-NLRP3 axis. CONCLUSION: Our results suggested that ZGJTYS inhibited the activation of pyroptosis by gut-derived TMAO via the mROS-NLRP3 axis to prevent DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Humanos , Ratas , Cromatografía Liquida , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , ARN Ribosómico 16S , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos
7.
Genome ; 66(4): 80-90, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36763968

RESUMEN

Polygonatum cyrtonema Hua is a traditional Chinese herb medicine, and it is widely distributed in China. The intrageneric taxonomy and phylogenetic relationships within Polygonatum have long been controversial due to their morphological similarity and lacking special DNA barcodes. In this paper, the complete chloroplast genome is a relatively conserved quadripartite structure including a large single copy region of 84 711 bp, a small single copy region of 18 210 bp, and a pair of inverted repeats region of 26 142 bp. A total of 342 simple sequence repeats were identified, and most of them were found to be composed of A/T, including 126 mono-nucleotides and 179 di-nucleotides. Nucleotide diversity was analyzed and eight highly variable regions (psbl∼trnT-CGU, atpF∼atpH, trnT-GGU∼psbD, psaJ∼rps20, trnL-UAG∼ndhD, ndhG∼ndhl, ndhA, and rpl32∼ccsA) were identified as potential molecular markers. Phylogenetic analysis based on the whole chloroplast genome showed that P. cyrtonema, within the family Asparagaceae, is closely related to Polygonatum sibiricum and Polygonatum kingianum. The sequence matK, trnT-GGU & ccsA, and ndhG∼ndhA were identified as three DNA barcodes. The assembly and comparative analysis of P. cyrtonema complete chloroplast genome will provide essential molecular information about the evolution and molecular biology for further study.


Asunto(s)
Genoma del Cloroplasto , Plantas Medicinales , Polygonatum , Filogenia , Polygonatum/genética , Plantas Medicinales/genética , China
8.
Molecules ; 27(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36080128

RESUMEN

Morus alba L. is used in traditional Chinese medicine for its anti-diabetic activity; however, the part of the hypoglycemic activity and related active metabolites are still not fully clarified. In this study, the metabolites in the M. alba roots, leaves, twigs, and fruits extracts (70% ethanol extracts) were systematically identified, and their hypoglycemic activity was evaluated by the high-fat diet/streptozotocin-induced 2 diabetes mellitus (T2D) mouse model. A total of 60 high-level compounds, including 16 polyphenols, 43 flavonoids, and one quinic acid, were identified by high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS) combined with the fragmentation pathways of standards and the self-established database. Among them, 23 metabolites were reported for the first time from this plant. In contrast to the extracts of M. alba leaves and fruits, the extracts of roots and twigs displayed significant hypoglycemic activity The glycemia was significantly reduced from 32.08 ± 1.27 to 20.88 ± 1.82 mmol/L and from 33.32 ± 1.98 to 24.74 ± 1.02 mmol/L, respectively, after 4 weeks of treatment with roots and twigs extracts. Compound 46 (morusin), which is a high-level component identified from the extracts of M. alba roots, also displayed significant activity in decreasing the blood glucose level of T2D mice reduced from 31.45 ± 1.23 to 23.45 ± 2.13 mmol/L. In addition, the extracts of roots and twigs displayed significant activity in reducing postprandial glycemia. This work marks the first comparison of the metabolites and hypoglycemic activity of M. alba roots, leaves, twigs, and fruits extracts, and provides a foundation for further development of M. alba extracts as anti-diabetic drugs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Morus , Animales , Glucemia/análisis , Cromatografía Liquida , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Ratones , Morus/química , Extractos Vegetales/química , Hojas de la Planta/química , Espectrometría de Masas en Tándem
9.
Acta Diabetol ; 59(10): 1295-1308, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35857109

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) has already become a global pandemic. Recently, reports showed its pathogenesis was closely related to a disorder of gut microbiota. In China, the Liu-Wei-Di-Huang Pills (LWDH) have treated T2DM for thousands of years. However, its therapeutic mechanism associated with gut microbiota is worthy of further study. AIMS: This study aims to investigate the effects of LWDH on T2DM by regulating gut microbiota and short-chain fatty acids (SCFAs) in Goto-Kakizaki (GK) rats. METHODS: T2DM models were successfully established based on GK rats and administrated with LWDH. The changes in fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and serum insulin (INS) were determined, and the immunohistochemical (IHC) method was used to test INS expression in pancreas. The 16S-ribosomal DNA (16S rDNA) sequencing analysis assessed gut microbiota structural changes; a gas chromatography-mass spectrometer (GC-MS)-based metabolomics method was adopted to detect SCFA levels. The pathological morphology of jejunum was detected by hematoxylin-eosin (H&E) staining, and the expression of GPR43, GPR41, GLP-1, and GLP-1R was evaluated by qRT-PCR and ELISA, respectively. RESULTS: We observed that GK rats treated with LWDH: (a) has altered the microbial structure and promoted the abundance of bacteria in Firmicutes, including Lactobacillus, Allobaculum, and Ruminococcus_2, (b) increased SCFAs levels involving acetic acid, propionic acid, and butyric acid and (c) alleviated T2DM and jejunum injuries potentially based on SCFAs-GPR43/41-GLP-1 pathway. CONCLUSION: LWDH could improve T2DM by regulating gut microbiota and SCFAs, and the therapeutic mechanism might be related to the SCFAs-GPR43/41-GLP-1 pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos Volátiles , Péptido 1 Similar al Glucagón/uso terapéutico , Metabolismo de los Lípidos , Ratas
10.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630607

RESUMEN

In this study, a green and effective extraction method was proposed to extract two main compounds, ginsenosides and polysaccharides, from American ginseng by combining deep eutectic solvents (DESs) with aqueous two-phase systems. The factors of type of DESs, water content in DESs, the solid-liquid ratio, extraction temperature, and extraction time were studied in the solid-liquid extraction. Then, the aqueous two-phase system (DESs-ethylene oxide-propylene oxide (EOPO)) and salty solution exchange (EOPO-salty solution) was applied for the purification of polysaccharides. The content of the polysaccharides and ginsenosides were analyzed by the anthrone-sulfuric acid method and HPLC method, which showed that the extraction efficiency of deep eutectic solvents (DESs) was better than conventional methods. Moreover, the antioxidant activities of ginseng polysaccharides and their cytotoxicity were further assayed. The advantages of the current study are that, throughout the whole extraction process, we avoided the usage of an organic reagent. Furthermore, the separated green solvent DESs and EOPO could be recovered and reused for a next cycle. Thus, this study proposed a new, green and recyclable extraction method for extracting ginsenosides and polysaccharides from American ginseng.


Asunto(s)
Ginsenósidos , Panax , Disolventes Eutécticos Profundos , Polisacáridos , Agua
11.
Drug Des Devel Ther ; 16: 1231-1254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517983

RESUMEN

Purpose: This study aimed to reveal the multicomponent synergy mechanisms of SWP based on network pharmacology and metabolomics for exploring the relationships of active ingredients, biological targets, and crucial metabolic pathways. Materials: Network pharmacology, including TRRUST, GO, and KEGG, enrichment was used to discover the active ingredients and potential regulation mechanisms of SWP. LC-MS and multivariate data analysis method were further applied to analyze serum metabolomics profiling for discovering the potential metabolic mechanisms of SWP on AA induced by Cyclophosphamide (CTX) and 1-Acetyl-2-phenylhydrazine (APH). Results: A total of 27 important bioactive ingredients meeting the ADME (absorption, distribution, metabolism, and excretion) screening criteria from SWP were selected. Interaction networks were constructed and validated based on the 10 associated ingredients with the relevant targets. A total of 125 biomarkers were found by Metabolomics approach, which associated with the development of AA, mainly involved in amino acid metabolism and lipid metabolism. While SWP can reverse the above 12 metabolites changed by AA. Network analysis revealed the synergistic effects of SWP through the 43 crucial pathways, including Sphingolipid signaling pathway, Sphingolipid metabolism, Arginine and proline metabolism, VEGF signaling pathway, Estrogen signaling pathway. Conclusion: The study suggested that SWP is a useful alternative for the treatment of AA induced by CTX + APH. Its potential mechanisms are to improve hematopoietic microenvironment and promote bone marrow hematopoiesis therapies.


Asunto(s)
Anemia Aplásica , Medicamentos Herbarios Chinos , Anemia Aplásica/inducido químicamente , Anemia Aplásica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Humanos , Metabolómica/métodos , Farmacología en Red , Esfingolípidos
12.
Rapid Commun Mass Spectrom ; 36(14): e9323, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35560736

RESUMEN

RATIONALE: Cucumber, as a popular fruit and vegetable, has tremendously contributed to providing a sufficient and high-quality food supply. However, the cucumber plant metabolites, which may possess potential benefits for human health, were rarely reported. In addition, rapid detection of these metabolites from the complex biological matrix of cucumber samples is a tremendous challenge. METHODS: A rapid detection method was established to systematically screen cucurbitacins and cucurbitacin glycosides in cucumber plants by combining high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC-Q-TOF-MS) with in-source fragmentation (ISF). Moreover, the alkali cations, including acetic acid, 0.1% LiCl, 0.1% NH4 Cl, 0.1% NaCl, and 0.1% KCl, were added to the mobile phase for improving the ion response. RESULTS: The fragmentation pathways of seven cucurbitacins and cucurbitacin glycosides were primarily investigated. The characteristic ISF ions at m/z 501.3211 and 503.3367 were identified and employed to screen 40 cucurbitacins and cucurbitacin glycosides from the complex biological matrix. Their structures were identified by their tandem mass spectrometry (MS/MS) spectra and fragmentation pathways of references. Finally, the metabolic distribution and network of cucurbitacins and cucurbitacin glycosides in cucumber plants were also proposed. CONCLUSIONS: This work marks the first systematic and comprehensive study of the metabolites in cucumber plants using HPLC-Q-TOF-MS technology, providing a template for screening and identifying the triterpenoids from other plant-derived medicines or food.


Asunto(s)
Cucumis sativus , Cucurbitacinas , Álcalis , Cromatografía Líquida de Alta Presión/métodos , Cucurbitacinas/análisis , Glicósidos/química , Humanos , Iones , Espectrometría de Masas en Tándem/métodos
13.
J Pharm Biomed Anal ; 215: 114778, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35462288

RESUMEN

Lilium, a perennial crop with great ornamental, medicinal and edible value, has been frequently used as functional food and medicine. Lilium lancifolium Thunb. (L. lancifolium) and Lilium brownii F.E.Brown var.viridulum Baker (L. brownii) are the most used medicinal species in China. However, the flavor compounds of these two species have not yet been clear. Here, metabolomics and transcriptome analysis were used to reveal the difference of the bitter substances of L. lancifolium and L. brownii. Qualitative results indicated that nine compounds are commonly existed in L. lancifolium and L. brownii, while nine compounds are unique in L. lancifolium and eight compounds are unique in L. brownii. Furthermore, quantitative results revealed that the content of regaloside A in L. lancifolium was nearly 2-7 folds higher than that of L. brownii, and the content of regaloside B in L. lancifolium was about 4-16 folds higher than that of L. brownii. Regaloside C and E were not detected in L. brownii. Transcriptome analysis showed that there were 90 unique genes up-regulated in L. lancifolium samples in the pathway of phenylpropanoid biosynthesis and 75 unique genes up-regulated in L. brownii samples, which could be related to the different content and chemical structure specificity of phenylpropanoid glycerol glucosides in L. lancifolium and L. brownii. The results of our in-deep research provide new insights into the bitter substances of L. lancifolium and L. brownii, and a further consideration for the chemical consistency and quality evaluation for Lilii bulbus.


Asunto(s)
Lilium , China , Lilium/química , Lilium/genética , Metaboloma , Raíces de Plantas , Transcriptoma
14.
Anal Methods ; 13(10): 1226-1231, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33605948

RESUMEN

Establishing a fast and effective extraction method for herbs is beneficial for the determination of their main compounds and estimating their quality. In this study, deep eutectic solvents (DESs) were optimized to simultaneously extract three main types of phenolic acids, i.e., regaloside B, regaloside C, and regaloside E, and polysaccharides from the bulbs of Lilium lancifolium Thunb. Based on the optimized extraction conditions, i.e., an extraction temperature of 50 °C, an extraction time of 40 min, a solid-liquid ratio of 1 : 25, and a ratio of water in the DES of 20%, the extracted amounts of regaloside B, regaloside C, and regaloside E reached 0.31 ± 0.06 mg g-1, 0.29 ± 0.03 mg g-1, and 3.04 ± 0.38 mg g-1, respectively. The extraction efficiencies were higher than those obtained using conventional organic solvents. Next, the polysaccharide levels were measured and compared with those obtained using a conventional hot water extraction method, and equivalent extraction efficiencies were obtained with the conventional hot water extraction method. This study provides a new application of deep eutectic solvents (DESs) for simultaneously extracting phenolic acids and polysaccharides from the bulbs of L. lancifolium Thunb. Considering the biodegradability and pharmaceutical acceptability, DESs as a class of green solvents could have wide applications in the extraction of natural products.


Asunto(s)
Lilium , Extractos Vegetales , Polisacáridos , Solventes , Agua
15.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6387-6394, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34994130

RESUMEN

Chronical hyperuricemia, a severe metabolic disease characterized by increased serum uric acid, urea nitrogen, and creatinine, has a positive correlation with the risks of gouty arthritis, diabetes, hypertension, and kidney damage. Abnormal purine metabolism and reduced uric acid excretion are the major causes of hyperuricemia, which, thus, points to a potential strategy of preventing from or delaying the progress of hyperuricemia-related diseases and its complications by effectively controlling the serum uric acid level. Increasing evidence has revealed that Chinese medicines alleviate hyperuricemia through regulating intestinal flora, which plays a pivotal role in regulating metabolites, including uric acid level. The disease treatment with traditional Chinese medicine is based on syndrome differentiation, and Chinese medicines often have multiple effects and a wide range of targets. In this review, we summarized the anti-hyperuricemia effects and mechanisms of active compounds in Chinese medicines, single Chinese medicinal herbs, and Chinese medicinal prescriptions in regulating the uric acid level via intestinal flora and metabolites, which will be helpful for further study and application of Chinese medicines in hyperuricemia treatment.


Asunto(s)
Artritis Gotosa , Microbioma Gastrointestinal , Hiperuricemia , China , Humanos , Hiperuricemia/tratamiento farmacológico , Ácido Úrico
16.
Phytochemistry ; 181: 112536, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33160226

RESUMEN

Seven undescribed indole-based alkaloids, xuefengins A-D and xuefenglasins A-C, were isolated from natural Ophiocordyceps xuefengensis, along with six known alkaloids. Their structures were elucidated by comprehensive spectroscopy, with absolute configurations confirmed by comparison with calculated electronic circular dichroism spectra. Eleven of the isolates were tested for cytotoxicity against the U937, NB4, MCF-7, Hep G2, and A549 cancer cell lines. Two compounds exhibited moderate activities, with IC50 values of 2.83-25.68 µM and 1.54-12.16 µM. Further pharmacological studies showed that these two compounds inhibit cell proliferation by inducing apoptosis, and decreasing p38 and caspase-3 levels in A549 cells.


Asunto(s)
Alcaloides , Alcaloides Indólicos , Células A549 , Alcaloides/farmacología , Línea Celular Tumoral , Hypocreales , Alcaloides Indólicos/farmacología , Estructura Molecular
17.
Int J Anal Chem ; 2020: 1306439, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32855636

RESUMEN

MATERIALS AND METHODS: MKR mice were used for the development of diabetes with high-fat diet feeding. These mice were further injected with streptozocin (STZ) to aggravate kidney failure. Fasting blood glucose (FBG) and urinary albumin-to-creatinine ratio (ACR values) were determined to validate the successful establishment of diabetic models with desired kidney dysfunction. Metabolomics approach coupled with gas chromatography-mass spectrometry (GC-MS) and random forest (RF) algorithm was proposed to discover the metabolic differences among model group and control group as well as to examine the therapeutic efficacy of traditional Chinese medicine, Liu-Wei-Di-Huang-Wan (LWDHW), in diabetes and associated kidney failure. RESULTS: Some metabolites such as 3-hydroxybutyric acid, citric acid, hexadecanoic acid, and octadecanoic acid showed significant differences between the control group and model group. Treatment with LWDHW resulted in a significant decrease in FBG and ACR values. These results suggested that LWDHW could have beneficial effects in diabetes-associated renal failure.

18.
J Ethnopharmacol ; 262: 113160, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32736053

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Siwu Paste (SWP) was recorded in the first national Pharmacopoeia of China, "Tai Ping Hui Min He Ji Ju Fang", it showed excellent effects in regulating all syndromes relevant to blood. AIM OF THE STUDY: This study aimed to investigate the protective effects of Siwu Paste (SWP) on bone marrow hematopoietic by using rats' model with blood deficiency syndrome induced by chemotherapy. MATERIALS AND METHODS: Animal model with blood deficiency syndrome was successfully established by evaluating their peripheral blood cell level and erythrocyte membrane energy metabolism enzyme activity. Serum hematopoietic cytokine levels were detected by using Enzyme-linked immunosorbent assay (ELISA). Hematoxylin-Eosin (HE) staining method was used to observe the pathological morphology of femur bone marrow, and the viability of BMSC was detected by Cell Counting Kit (CCK-8). Furthermore, the expression of toll-like receptor 4 (TLR4), nuclear transcription factor kB (NF-κB), and NOD-like receptor protein 3 (NLRP3) protein in femur bone marrow were detected by using Western-blotting and High-content cell imaging analysis system (HCA). RESULTS: Obtained results showed that SWP could significantly improve the status of anemia, regulate the expressions of serum hematopoietic cytokines, and protect bone marrow hematopoietic cells. Furthermore, the expressions of TLR4, NF-κB, and NLRP3 protein were inhibited in bone marrow hematopoietic cells. CONCLUSIONS: Siwu Paste (SWP) could recover the bone marrow hematopoietic functions in rats with blood deficiency syndrome. The therapeutic mechanism may be related to the regulation of serum hematopoietic cytokines, and inhibition of TLR4/NF-κB/NLRP3 signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Enfermedades Hematológicas/tratamiento farmacológico , Hematopoyesis/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Enfermedades Hematológicas/sangre , Hematopoyesis/fisiología , Masculino , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pomadas , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo
19.
Int J Anal Chem ; 2020: 2348903, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308684

RESUMEN

The Lonicera plants (family Caprifoliaceae) with strong antioxidant activity are used as potential health-supporting phytochemicals. Studying the detailed relationships between bioactive compounds and their antioxidant activity is important for further comprehensive development and application of them. In this paper, the antioxidant capacities and compositions of five species of Lonicera flowers were investigated by using the online HPLC-DAD/MS-DPPH method. Results indicated that the samples contained higher amounts of phenols had better antioxidant activity. Furthermore, principal component analysis and linear regression were further used to analyze the correlations between antioxidant capacity and compounds and find the compounds having higher contribution to antioxidant activity. 5-O-Caffeoylquinic acid, 4-O-caffeoylshikimic acid, methyl-5-O-caffeoylquinate, 1,4-di-O-caffeoylquinic acid, and 3,4,5-tri-O-caffeoylquinic acid were screened as stronger antioxidant candidates. In this study, HPLC-DAD/MS and antioxidant activity methods were combined together to analyze the compounds' information and activity assays of Lonicera, which might provide more evidence for its quality control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA