Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Materials (Basel) ; 17(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893861

RESUMEN

The fretting wear behaviors of silicone rubber under dry friction and different lubrication conditions are studied experimentally. Water, engine oil, dimethyl silicone oil (DSO), and dimethyl silicone oil doped with graphene oxide (DSO/GO) are selected as lubricants. Under the liquid lubrication conditions, the silicone rubber samples are always immersed in the same volume of lubricant. The contact model of a 440C steel ball and silicone rubber sample is the sphere-on-flat contact. The reciprocating fretting wear experiments are carried out using the reciprocating friction wear tester. A scanning electron microscope and three-dimensional white-light interference profilometer are used to detect the surface wear morphology and obtain the wear volume, respectively. The influences of normal force, lubrication condition, and displacement amplitude on fretting wear behavior are discussed. The fretting wear performances of silicone rubber under different fretting states and lubrication conditions are compared. The results show that for a small normal force, silicone rubber has the best wear resistance under DSO/GO lubrication. While for a large normal force, silicone rubber has the best wear resistance under engine oil lubrication.

2.
J Hazard Mater ; 475: 134910, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889465

RESUMEN

Aspergillus niger (A. niger) spores can induce numerous health problems. Once the airflow-imposed drag force on an A. niger spore exceeds its binding force with the colony, the spore is detached. Turbulent flow may considerably increase the spore detachment. No method is currently available for prediction of the drag force on a spore and its detachment in turbulent flows. This investigation measured the turbulent velocities and detachment of A. niger colonies in a wind tunnel. Computational fluid dynamics (CFD) was employed to model an A. niger unit subjected to turbulent flow blowing. The top 1 % quantile instantaneous velocity of the turbulent flow was specified as the steady entry flow boundary condition for solving the peak velocity distribution and the peak drag forces onto spores. The predicted spore detachment ratios were compared with the measurement data for model validation. The results revealed that the spore detachment ratios with a turbulence intensity of 17 % to 20 % can be twice to triple the ratio with a turbulence intensity of approximately 1 %, when the average velocity for blowing remains the same. The proposed CFD model can accurately predict the detachment ratios of the A. niger spores. ENVIRONMENTAL IMPLICATION: Some people are sensitive to the Aspergillus niger (A. niger) spores, and excessive exposure can cause nasal congestion, skin tingling, coughing, and even asthma. Turbulent flow can considerably increase the spore detachment, due to the increased airflow-imposed drag force on the spores during turbulence. This investigation developed a numerical model to solve for the peak velocity distribution and the peak drag forces onto spores in turbulent flows to predict the spore detachment. With the numerical tool, the airborne fungal spore concentrations would be predictable, which paves a way for intelligent and precise control of fungal aerosol pollution.


Asunto(s)
Aspergillus niger , Esporas Fúngicas , Microbiología del Aire , Modelos Teóricos , Hidrodinámica , Movimientos del Aire
3.
Curr Issues Mol Biol ; 46(6): 5866-5880, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38921021

RESUMEN

Avian leukosis virus (ALV) is an avian oncogenic retrovirus that can impair immunological function, stunt growth and decrease egg production in avian flocks. The capsid protein (P27) is an attractive candidate for ALV diagnostics. In the present study, a new hybridoma cell (1F8) stably secreting an anti-P27 monoclonal antibody (mAb) was developed. The mAb exhibited a high affinity constant (Ka) of 8.65 × 106.0 L/mol, and it could be used for the detection of ALV-A/B/J/K strains. Moreover, a total of eight truncated recombinant proteins and five synthetic polypeptides were utilized for the identification of the B-cell epitopes present on P27. The results revealed that 218IIKYVLDRQK227 was the minimal epitope recognized by 1F8, which had never been reported before. Additionally, the epitopes could strongly react with different ALV subgroup's specific positive serum and had a complete homology among all the ALV subgroups strains. Finally, a new sandwich ELISA method was created for the detection of ALV antigens, demonstrating increased sensitivity compared to a commercially available ELISA kit. These results offer essential knowledge for further characterizing the antigenic composition of ALV P27 and will facilitate the development of diagnostic reagents for ALV.

5.
Fundam Res ; 4(3): 430-441, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933199

RESUMEN

Corona virus disease 2019 (COVID-19) has exerted a profound adverse impact on human health. Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people. Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks. Monitoring of pathogenic microorganisms in the air, especially in densely populated areas, may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage. The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation, allocate health resources, and formulate epidemic response policies. This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission, which lays a theoretical foundation for the monitoring and prediction of epidemic development. Secondly, the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized. Subsequently, this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology, atmospheric sciences, environmental sciences, sociology, demography, etc. By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere, this review proposes suggestions for epidemic response, namely, the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.

6.
Angew Chem Int Ed Engl ; : e202407315, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818545

RESUMEN

Li metal is regarded as the "Holy Grail" in the next generation of anode materials due to its high theoretical capacity and low redox potential. However, sluggish Li ions interfacial transport kinetics and uncontrollable Li dendrites growth limit practical application of the energy storage system in high-power device. Herein, separators are modified by the addition of a coating, which spontaneously grafts onto the Li anode interface for in situ lithiation. The resultant alloy possessing of strong electron-donating property promotes the decomposition of lithium bistrifluoromethane sulfonimide in the electrolyte to form a LiF-rich alloy-doped solid electrolyte interface (SEI) layer. High ionic alloy solid solution diffusivity and electric field dispersion modulation accelerate Li ions transport and uniform stripping/plating, resulting in a high-power dendrite-free Li metal anode interface. Surprisingly, the formulated SEI layer achieves an ultra-long cycle life of over 8000 h (20,000 cycles) for symmetric cells at a current density of 10 mA cm-2. It also ensures that the NCM(811)//PP@Au//Li full cell at ultra-high currents (40 C) completes the charging/discharging process in only 68 s to provide high capacity of 151 mAh g-1. The results confirm that this scalable strategy has great development potential in realizing high power dendrite-free Li metal anode.

7.
One Health ; 18: 100748, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38774301

RESUMEN

The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.

8.
Sci Total Environ ; 926: 171873, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521275

RESUMEN

Research on High Spatial-Resolved Source-Specific Exposure and Risk (HSRSSER) was conducted based on multiple-year, multiple-site synchronous measurement of PM2.5-bound (particulate matter with aerodynamic diameter<2.5 µm) toxic components in a Chinese megacity. The developed HSRSSER model combined the Positive Matrix Factorization (PMF) and Land Use Regression (LUR) to predict high spatial-resolved source contributions, and estimated the source-specific exposure and risk by personal activity time- and population-weighting. A total of 287 PM2.5 samples were collected at ten sites in 2018-2020, and toxic species including heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) were analyzed. The percentage non-cancer risk were in the order of traffic emission (48 %) > industrial emission (22 %) > coal combustion (12 %) > waste incineration (11 %) > resuspend dust (7 %) > OPE-related products (0 %) ≈ secondary particles (0 %). Similar orders were observed in cancer risk. For traffic emission, due to its higher source contributions and large population in central area, non-cancer and cancer risk fraction increased from 23 % to 48 % and 20 % to 46 % after exposure estimation; while for industrial emission, higher source contributions but small population in suburb area decreased the percentage non-cancer and cancer risk from 38 % to 22 % and 39 % to 24 %, respectively.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Ciudades , Hidrocarburos Policíclicos Aromáticos/análisis , China/epidemiología
9.
Front Surg ; 11: 1307460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486796

RESUMEN

Introduction: The Tarlov cysts are pathological enlargements of the cerebrospinal fluid spaces between the endoneurium and perineurium, which can cause intolerable sciatic pain, motor impairment of lower limbs, and bladder/bowel dysfunction. Currently, the treatment results are unsatisfactory due to the low cure rates and extensive surgical trauma. Thus, there is an ongoing exploration of surgical techniques for Tarlov treatment. In the current study, we present a novel neuroendoscopic-assisted technique that combines the fenestration, leakage sealing, and tamponade of the Tarlov cyst. Methods: Between January 2020 and December 2021, a total of 32 Tarlov patients were enrolled and received neuroendoscopic-assisted surgery. Their pre- and post-surgical Visual Analogue Scale (VAS) scores, major complaints, and MR imaging were recorded for comparison. Results: 27 of 32 patients (84.4%) patients demonstrated immediate pain relief as their VAS scores decreased from 5.6 ± 1.5 to 2.5 ± 1.1 (p < 0.01) on the first day after surgery. At the 3-month follow-up, the patients' average VAS score continued to decrease (1.94 ± 0.8). Meanwhile, saddle paresthesia, urinary incontinence, and constipation were relieved in 6 (50%), 4 (80%), and 5 (41.7%), respectively, according to patients self-report. No surgical-related complication was observed in any of the cases. Discussion: We conclude that neuroendoscopic-assisted surgery is an effective surgical method for symptomatic Tarlov cysts with minimized complications.

10.
Environ Sci Pollut Res Int ; 31(13): 20399-20408, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374504

RESUMEN

Fenoxaprop-p-ethyl (FEN) is an aryloxy phenoxy propionate herbicide that has been widely used in paddy fields. Previous studies have indicated that FEN is highly toxic to aquatic organisms, but little is known about the developmental effects of FEN. This study investigated acute and developmental toxicity, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and metabolomic analyses in zebrafish embryos after 96 h of exposure. FEN exhibited high acute toxicity to zebrafish embryos and larvae. Exposure to FEN could reduce heartbeat and hatching rates and increase malformation rates in embryos. Oxidative damage was also caused in embryos. The results of metabolomics analysis showed that 102 differentially abundant metabolites were found in zebrafish embryos in the 0.05 mg/L FEN treatment group, and 60 differentially abundant metabolites were found in the 0.20 mg/L FEN treatment group. These differentially abundant metabolites mainly belonged to 9 metabolic pathways, of which folate pathways and ABC transport protein pathways had the greatest impact. These results suggested that FEN induced high acute and developmental toxicity in zebrafish embryos.


Asunto(s)
Oxazoles , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/metabolismo , Propionatos/metabolismo , Estrés Oxidativo , Embrión no Mamífero , Contaminantes Químicos del Agua/metabolismo
11.
World Neurosurg ; 185: e415-e420, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38360206

RESUMEN

OBJECTIVE: This study compared the clinical therapeutic efficacy of syringo-subarachnoid shunt placement with direct tube and T-tube via the dorsal root entry zone (DREZ) approach for treatment of eccentric syringomyelia. METHODS: A retrospective study was performed of 41 patients with idiopathic or secondary eccentric syringomyelia from November 2011 to December 2022. Syringo-subarachnoid shunt placement with direct tube or T-tube via the DREZ approach was performed. The modified Japanese Orthopaedic Association low back pain scale was used to investigate the severity of clinical symptoms. Magnetic resonance imaging was used to investigate therapeutic efficacy(reduction of the cavity volume by >10% was considered an improvement and 50% was considered a significant improvement). RESULTS: Incision length of the spinal cortex in the direct tube group was shorter than in the T-tube group (3.10 ± 0.28 cm vs. 5.03 ± 0.19 cm), with a significant difference between the 2 groups (t = -52.56, P < 0.001). Modified Japanese Orthopaedic Association score 3 months postoperatively was significantly better than the preoperative score in both the direct tube group(t = 40.954, P < 0.001) and the T-tube group(t = 24.769, P < 0.001). Statistical comparison revealed there was no difference in imaging improvement between the direct tube group and T-tube group 3 months (χ2 = 0.20, P = 0.655) and 12 months (χ2 = 0.21, P = 0.647) postoperatively. CONCLUSIONS: Syringo-subarachnoid shunt placement with direct tube via the DREZ approach for treatment of eccentric syringomyelia is safer than with T-tube via the DREZ approach due to smaller incision length and less of a space-occupying effect with same therapeutic efficacy.


Asunto(s)
Derivaciones del Líquido Cefalorraquídeo , Siringomielia , Humanos , Siringomielia/cirugía , Siringomielia/diagnóstico por imagen , Femenino , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Derivaciones del Líquido Cefalorraquídeo/métodos , Resultado del Tratamiento , Raíces Nerviosas Espinales/cirugía , Raíces Nerviosas Espinales/diagnóstico por imagen , Espacio Subaracnoideo/cirugía , Espacio Subaracnoideo/diagnóstico por imagen , Anciano , Imagen por Resonancia Magnética
12.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181741

RESUMEN

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Asunto(s)
Neoplasias Pulmonares , Proteogenómica , Carcinoma Pulmonar de Células Pequeñas , Humanos , Línea Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células Pequeñas/química , Carcinoma Pulmonar de Células Pequeñas/genética , Xenoinjertos , Biomarcadores de Tumor/análisis
13.
ACS Appl Mater Interfaces ; 16(4): 4719-4728, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38252811

RESUMEN

Nuclear energy is a competitive green energy, yet corrosion deposition and boron hideout on pressurized water reactor fuel cladding surfaces could cause localized corrosion and power shift, resulting in huge safety and economic risks. Alleviation of these problems requires the understanding of the corrosion deposition mechanism and related boron behavior. In this study, we explore corrosion product deposition in typical fuel assembly channels under subcooled boiling conditions and propose a boron hideout and return mechanism to explain the reason for the failure of the power reduction inhibiting a power shift. Porous corrosion depositions with the same morphology and thickness as the real depositions in a fuel cycle are obtained in a week via the accelerated deposition method simulating a real subcooled boiling and water chemical environment. Stronger subcooled boiling generates more bubbles, resulting in higher supersaturation of corrosion products at the gas-liquid interface. The corresponding precipitated stable crystals are smaller, and the formed deposition layer is looser and thicker with smaller particles. On the basis of the above characterizations, the effect of subcooled boiling, solute concentration, and water chemistry on the corrosion deposition mechanism is revealed. High-resolution characterization methods indicate that boron hides within the depositions mainly in the form of H3BO3 and Li2B4O7. The boron coolant concentration increases by 307.9 ppm after power reduction, confirming the return behavior of porous hidden boron. Hidden boron return behavior brings potential challenges for estimating critical conditions and plant response operations. The results of this study provide a precise method for understanding the corrosion product deposition and boron hideout-return behavior to further develop mitigation strategies for power shift and localized corrosion security issues.

14.
iScience ; 27(2): 108789, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38292425

RESUMEN

Fouling deposit on nuclear fuel cladding causes wick boiling and boron hideout, resulting in localized corrosion and power shift with great potential security and economic risks. Herein, a cost-effective time-saving adjustable reproduction method combining sol-gel with ceramic sintering is presented to enable wide coverage of fouling's morphologies and microstructures. Based on fractal analysis, structurally self-similar fouling deposits from different reactors conform to proposed porosity-fractal dimension law under 3% relative error. Wick boiling and boron hideout numerical simulation based on fractal dimension is implemented to treat different morphologies and structures in a unified way. Cladding surface underneath fouling deposit has a maximum 9.243 K temperature increasement due to thermal resistance, and H3BO3 is concentrated 11.274 times by mean of wick boiling, causing Li2B4O7 precipitation under extreme conditions with low porosity and high heat flux. The insights in this study provide a precise approach for quantitative evaluation of localized corrosion and power shift.

15.
Commun Biol ; 7(1): 25, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182874

RESUMEN

Degradation of unliganded androgen receptor (AR) in prostate cancer cells can be prevented by proteasome inhibition, but this is associated with only modest increases in polyubiquitylated AR. An inhibitor (VLX1570) of the deubiquitylases associated with the proteasome did not increase ubiquitylation of unliganded AR, indicating that AR is not targeted by these deubiquitylases. We then identified a series of AR ubiquitylation sites, including a not previously identified site at K911, as well as methylation sites and previously identified phosphorylation sites. Mutagenesis of K911 increases AR stability, chromatin binding, and transcriptional activity. We further found that K313, a previously reported ubiquitylation site, could also be methylated and acetylated. Mutagenesis of K313, in combination with K318, increases AR transcriptional activity, indicating that distinct posttranslational modifications at K313 differentially regulate AR activity. Together these studies expand the spectrum of AR posttranslational modifications, and indicate that the K911 site may regulate AR turnover on chromatin.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Ubiquitinación , Procesamiento Proteico-Postraduccional , Cromatina/genética
16.
Small ; 20(3): e2306806, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688339

RESUMEN

The issues of polysulfide shuttling and lethargic sulfur redox reaction (SROR) kinetics are the toughest obstacles of lithium-sulfur (Li-S) battery. Herein, integrating the merits of increased density of metal sites and synergistic catalytic effect, a unique single-atom catalyst (SAC) with nonmetallic-bonding Fe-Mn diatomic pairs anchored on hollow nitrogen-doped carbonaceous nanodisk (denoted as FeMnDA@NC) is successfully constructed and well characterized by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, etc. Density functional theory calculation indicates that the Fe-Mn diatomic pairs can effectively inhibit the shuttle effect by enhancing the adsorption ability retarding the polysulfide migration and accelerate the SROR kinetics. As a result, the Li-S battery assembled with FeMnDA@NC modified separator possesses an excellent electrochemical performance with ultrahigh specific capacities of 1419 mAh g-1 at 0.1 C and 885 mAh g-1 at 3.0 C, respectively. An outstanding specific capacity of 1165 mAh g-1 is achieved at 1.0 C and maintains at 731 mAh g-1 after 700 cycles. Notably, the assembled Li-S battery with a high sulfur loading of 5.35 mg cm-2 harvests a practical areal capacity of 5.70 mAh cm-2 at 0.2 C. A new perspective is offered here to construct advanced SACs suitable for the Li-S battery.

17.
Plant Physiol ; 194(3): 1593-1610, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37956067

RESUMEN

Proper seed development is essential for achieving grain production, successful seed germination, and seedling establishment in maize (Zea mays). In the past few decades, pentatricopeptide repeat (PPR) proteins have been proven to play an essential role in regulating the development of maize kernels through posttranscriptional RNA modification of mitochondrial genes. However, the underlying mechanisms remain largely unknown. Here, we characterized a mutant of DEFECTIVE KERNEL 56 (DEK56) with defective kernels that exhibited arrested development of both the embryo and endosperm. Accordingly, we isolated DEK56 through a map-based cloning strategy and found that it encoded an E subgroup PPR protein located in the mitochondria. Dysfunction of DEK56 resulted in altered cytidine (C)-to-uridine (U) editing efficiency at 48 editing sites across 21 mitochondrial transcripts. Notably, the editing efficiency of the maturase-related (matR)-1124 site was substantially reduced or abolished in the dek56 mutant. Furthermore, we found that the splicing efficiency of NADH dehydrogenase subunit 4 (nad4) Introns 1 and 3 was substantially reduced in dek56 kernels, which might be a consequence of the defective MatR function. Through a protein-protein interaction test, we hypothesized that DEK56 carries out its function by recruiting the PPR-DYW protein PPR motif, coiled-coil, and DYW domain-containing protein 1 (PCW1). This interaction is facilitated by Multiple Organellar RNA Editing Factors (ZmMORFs) and Glutamine-Rich Protein 23 (ZmGRP23). Based on these findings, we developed a working model of PPR-mediated mitochondrial processing that plays an essential role in the development of maize kernels. The present study will further broaden our understanding of PPR-mediated seed development and provide a theoretical basis for maize improvement.


Asunto(s)
Proteínas de Plantas , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mitocondrial/metabolismo , Semillas/metabolismo , Endospermo/metabolismo
18.
Small ; 20(12): e2308193, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37953460

RESUMEN

Designing catalysts to proceed with catalytic reactions along the desired reaction pathways, e.g., CO2 methanation, has received much attention but remains a huge challenge. This work reports one Ru1Ni single-atom alloy (SAA) catalyst (Ru1Ni/SiO2) prepared via a galvanic replacement reaction between RuCl3 and Ni nanoparticles (NPs) derived from the reduction of Ni phyllosilicate (Ni-ph). Ru1Ni/SiO2 achieved much improved selectivity toward hydrogenation of CO2 to CH4 and catalytic activity (Turnover frequency (TOF) value: 40.00 × 10-3 s-1), much higher than those of Ni/SiO2 (TOF value: 4.40 × 10-3 s-1) and most reported Ni-based catalysts (TOF value: 1.03 × 10-3-11.00 × 10-3 s-1). Experimental studies verify that Ru single atoms are anchored onto the Ni NPs surface via the Ru1-Ni coordination accompanied by electron transfer from Ru1 to Ni. Both in situ experiments and theoretical calculations confirm that the interface sites of Ru1Ni-SAA are the intrinsic active sites, which promote the direct dissociation of CO2 and lower the energy barrier for the hydrogenation of CO* intermediate, thereby directing and enhancing the CO2 hydrogenation to CH4.

19.
J Colloid Interface Sci ; 657: 664-671, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071815

RESUMEN

Two-dimensional metal-organic frameworks are considered to be promising electrocatalytic materials due to their ultrathin lamellar structure, ultrahigh porosity and large surface area, but there are still many challenges such as the embedding of organic ligands leading to low density of active sites and poor conductivity. Herein, we synthesize two-dimensional ferrocene-based metal-organic frameworks nanosheet electrocatalysts via the one-step hydrothermal hydrogen peroxide etching method. The prepared FcNi-BDC-H2O2/NF exhibits excellent oxygen evolution reaction performance with a current density of 100 mA·cm-2 at only 258 mV and a small driving potential of 1.542 V (10 mA·cm-2) is required to achieve overall water splitting. Significantly, an overall water-cracked cell using a solar cell assembly achieves the solar hydrogen conversion efficiency of 19.5%. The introduction of high electronegativity ferrocene and the etching of H2O2 increase the Ni3+ content of FcNi-BDC-H2O2, and expose more unsaturated active sites, which improve the intrinsic activity of the catalysts and the mass transfer rate during the catalytic process. Moreover, the FcNi-BDC-H2O2/NF demonstrates significant urea oxidation reaction performance, achieving a potential of 1.35 V and producing 10 mA·cm-2. This study presents a viable approach to investigating highly efficient electrocatalysts for oxygen evolution reaction and urea oxidation reaction using MOF-based bifunctional catalysts.

20.
Sci Total Environ ; 912: 168714, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38007138

RESUMEN

Detachment of fungal spores from growing colonies results in human exposure. Thus far, the distribution of the binding forces of the spores in a fungal unit is unknown, so that precise prediction of the spores detachment is quite challenging. This investigation used centrifugal separation to measure the binding forces of the spores. Aspergillus niger (A. niger) colonies on a culture plate were placed in a centrifuge, the detached spores were counted, and this number was used to obtain the distribution of binding forces. Next, the air-blowing of an A. niger unit was modeled by computational fluid dynamics (CFD). A spore was judged to be detached if the air-imposed drag force was greater than the binding force. For model validation, the predicted spore detachment ratios were compared with the ratios measured in a wind tunnel test. The results revealed that the binding forces of the spores obeyed the log-normal distribution. The binding forces of the distal spores from colonies with a growth age of 66 h ranged from 0 nN to 4.0 nN and had a mean of 0.65 nN. The CFD modeling predicted the detachment ratios of the distal spores with good accuracy.


Asunto(s)
Aspergillus niger , Aspergillus , Humanos , Esporas Fúngicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA