RESUMEN
In the present research, the impacts of Ce additions at various concentrations (0, 1.0, 3.4, and 4.0 wt.%) on the evolution of the microstructure, mechanical properties, and thermal conductivity of as-cast and as-extruded Mg-3Sn alloys were investigated. The findings demonstrate that adding Ce caused the creation of a new ternary MgSnCe phase in the magnesium matrix. Some new Mg17Ce2 phases are generated in the microstructure when Ce levels reach 4%. The thermal conductivity of the Mg-3Sn alloy is significantly improved due to Ce addition, and the Mg-3Sn-3.4Ce alloy exhibits the highest thermal conductivity, up to 133.8 W/(m·K) at 298 K. After extrusion, both the thermal conductivity and mechanical properties are further improved. The thermal conductivity perpendicular to the extrusion direction of Mg-3Sn-3.4Ce alloy could achieve 136.28 W/(m·K), and the tensile and yield strengths reach 264.3 MPa and 227.2 MPa, with an elongation of 7.9%. Adding Ce decreases the dissolved Sn atoms and breaks the eutectic α-Mg and Mg2Sn network organization, leading to a considerable increase in the thermal conductivity of as-cast Mg-3Sn alloys. Weakening the deformed grain texture contributed to the further enhancement of the thermal conductivity after extrusion.
RESUMEN
Diminished testosterone levels have been documented as a key factor in numerous male health disorders. Both human and animal studies have consistently demonstrated that cadmium (Cd), a pervasive environmental heavy metal, results in decreased testosterone levels. However, the exact mechanism through which Cd interferes with testosterone synthesis remains incompletely elucidated. This research sought to examine the impact of cellular senescence on Cd-suppressed testosterone synthesis. We also investigated the related m6A modification mechanism. The results demonstrated that Cd (100â¯mg/L) led to a decrease in testosterone levels, along with downregulated expression of testosterone synthase in C57BL/6â¯N male mice. Furthermore, Cd significantly increased ß-galactosidase staining intensity, senescence-related proteins, and senescence-related secretory phenotypes in mouse testicular Leydig cells. Subsequent investigations revealed that Cd decreased the mRNA and protein levels of NAD-dependent deacetylase Sirtuin-1 (SIRT1) in Leydig cells. Mechanistically, mice treated with resveratrol (50â¯mg/kg), a specific SIRT1 activator, mitigated Leydig cell senescence and reversed Cd-reduced testosterone levels in mouse testes. These effects were also restored by SIRT1 overexpression in Leydig cells. Additionally, we found that Cd increased the level of methyltransferase enzyme METTL3 and Sirt1 m6A modification in Leydig cells. Mettl3 siRNA effectively restored Cd-enhanced Sirt1 m6A level and reversed Cd-downregulated Sirt1 mRNA expression in Leydig cells. Overall, our findings suggest that Cd exposure inhibits testosterone synthesis via Sirt1 m6A modification-mediated senescence in mouse testes. These results offer an experimental basis for investigating the causes and potential treatments of hypotestosteronemia induced by environmental factors.
Asunto(s)
Cadmio , Senescencia Celular , Células Intersticiales del Testículo , Sirtuina 1 , Testosterona , Animales , Masculino , Ratones , Cadmio/toxicidad , Senescencia Celular/efectos de los fármacos , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Endogámicos C57BL , Sirtuina 1/metabolismo , Sirtuina 1/genética , Testosterona/sangreRESUMEN
Strong evidence indicates that environmental stressors are the risk factors for male testosterone deficiency (TD). However, the mechanisms of environmental stress-induced TD remain unclear. Based on our all-cause male reproductive cohort, we found that serum ferrous iron (Fe2âº) levels were elevated in TD donors. Then, we explored the role and mechanism of ferroptosis in environmental stress-reduced testosterone levels through in vivo and in vitro models. Data demonstrated that ferroptosis and lipid droplet deposition were observed in environmental stress-exposed testicular Leydig cells. Pretreatment with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, markedly mitigated environmental stress-reduced testosterone levels. Through screening of core genes involved in lipid droplets formation, it was found that environmental stress significantly increased the levels of perilipins 4 (PLIN4) protein and mRNA in testicular Leydig cells. Further experiments showed that Plin4 siRNA reversed environmental stress-induced lipid droplet deposition and ferroptosis in Leydig cells. Additionally, environmental stress increased the levels of METTL3, METTL14, and total RNA m6A in testicular Leydig cells. Mechanistically, S-adenosylhomocysteine, an inhibitor of METTL3 and METTL14 heterodimer activity, restored the abnormal levels of Plin4, Fe2⺠and testosterone in environmental stress-treated Leydig cells. Collectively, these results suggest that Plin4 exacerbates environmental stress-decreased testosterone level via inducing ferroptosis in testicular Leydig cells.
Asunto(s)
Cadmio , Ferroptosis , Células Intersticiales del Testículo , Testosterona , Adulto , Animales , Humanos , Masculino , Ratones , Cadmio/toxicidad , Ferroptosis/efectos de los fármacos , Hierro/metabolismo , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/efectos de los fármacos , Testosterona/metabolismo , Testosterona/sangre , Ratones Endogámicos C57BLRESUMEN
Male subfertility or infertility is a common condition often characterized by men producing a low number of sperm with poor quality. To gain insight into this condition, we performed a quantitative proteomic analysis of semen samples obtained from infertile and fertile men. At least 6 proteins showed significant differences in regulation of alternatively spliced isoforms. To investigate this link between aberrant alternative splicing and production of poor-quality spermatozoa, we overexpressed the hnrnpH/F-orthologue Glorund (Glo) in Drosophila, which was also found to be abundant in poor quality human sperm. Transgenic animals produced low numbers of morphologically defective spermatozoa and aberrant formation of the "dense body," an organelle akin to the mammalian manchette. Furthermore, fertility trials demonstrated that transgenic flies were either completely infertile or highly subfertile. These findings suggest that dysregulation of hnrnpH/F is likely to result in the production of low-quality semen, leading to subfertility or infertility in men.
RESUMEN
BACKGROUND: The midpoint transverse process to pleura (MTP) block, a novel technique for thoracic paravertebral block (TPVB), was first employed in laparoscopic renal cyst decortication. CASE SUMMARY: Thoracic paravertebral nerve block is frequently employed for perioperative analgesia during laparoscopic cyst decortication. To address safety concerns associated with TPVBs, we administered MTP blocks in two patients prior to administering general anesthesia for laparoscopic cyst decortication. The MTP block was performed at the T9 level under ultrasound guidance, with 20 mL of 0.5% ropivacaine injected. Reduced sensation to cold and pinprick was observed from the T8 to T11 dermatome levels. Immediately postoperative Numeric Pain Rating Scale scores were 0/10 at rest and on movement, with none exceeding a mean 24 h numeric rating scale > 3. CONCLUSION: MTP block was effective technique for providing postoperative analgesia for patients undergoing laparoscopic renal cyst decortication.
RESUMEN
Autophagy plays a pivotal role in diverse biological processes, including the maintenance and differentiation of neural stem cells (NSCs). Interestingly, while complete deletion of Fip200 severely impairs NSC maintenance and differentiation, inhibiting canonical autophagy via deletion of core genes, such as Atg5, Atg16l1, and Atg7, or blockade of canonical interactions between FIP200 and ATG13 (designated as FIP200-4A mutant or FIP200 KI) does not produce comparable detrimental effects. This highlights the likely critical involvement of the non-canonical functions of FIP200, the mechanisms of which have remained elusive. Here, utilizing genetic mouse models, we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1, primarily via TAX1BP1 in NSCs. Conditional deletion of Tax1bp1 in fip200 hGFAP conditional knock-in (cKI) mice led to NSC deficiency, resembling the fip200 hGFAP conditional knockout (cKO) mouse phenotype. Notably, reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200 hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation. Conversely, a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration. Furthermore, conditional deletion of Tax1bp1 in fip200 hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200 hGFAP cKO mice. Collectively, these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function, presenting novel therapeutic targets for neurodegenerative diseases.
Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia , Células-Madre Neurales , Animales , Células-Madre Neurales/fisiología , Células-Madre Neurales/metabolismo , Ratones , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Noqueados , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Regulación de la Expresión Génica , Proteínas de NeoplasiasRESUMEN
Loss and overexpression of FAT1 occurs among different cancers, with these divergent states equated with tumor suppressor and oncogene activity, respectively. Regarding the latter, FAT1 is highly expressed in a high proportion of human acute leukemias relative to normal blood cells, with evidence pointing to an oncogenic role. We hypothesized that this occurrence represents legacy expression of FAT1 in undefined hematopoietic precursor subsets (i.e. sustained following transformation), predicating a role for FAT1 during normal hematopoiesis. We explored this concept by using the Vav-iCre strain to construct conditional knockout mice in which Fat1 expression was deleted at the hematopoietic stem cell stage. Extensive analysis of precursor and mature blood populations using multipanel flow cytometry revealed no ostensible differences between Fat1 conditional knockout mice and normal littermates. Further functional comparisons involving colony-forming unit and competitive bone marrow transplantation assays support the conclusion that Fat1 is dispensable for normal murine hematopoiesis.
Asunto(s)
Hematopoyesis , Ratones Noqueados , Animales , Ratones , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones Endogámicos C57BL , Trasplante de Médula Ósea , CadherinasRESUMEN
Fermenting Chinese medicinal herbs could enhance their bioactivities. We hypothesized probiotic-fermented gastrodia elata Blume (GE) with better potential to alleviate insomnia than that of unfermented, thus the changes in chemical composition and the insomnia-alleviating effects and mechanisms of fermented GE on pentylenetetrazole (PTZ)-induced insomnia zebrafish were explored via high-performance liquid chromatography (HPLC) and mass spectroscopy-coupled HPLC (HPLC-MS), phenotypic, transcriptomic, and metabolomics analysis. The results demonstrated that probiotic fermented GE performed better than unfermented GE in increasing the content of chemical composition, reducing the displacement, average speed, and number of apoptotic cells in zebrafish with insomnia. Metabolomic investigation showed that the anti-insomnia effect was related to regulating the pathways of actin cytoskeleton and neuroactive ligand-receptor interactions. Transcriptomic and reverse transcription qPCR (RT-qPCR) analysis revealed that secondary fermentation liquid (SFL) significantly modulated the expression levels of neurod1, msh2, msh3, recql4, ercc5, rad5lc, and rev3l, which are mainly involved in neuron differentiation and DNA repair. Collectively, as a functional food, fermented GE possessed potential for insomnia alleviation.
RESUMEN
A model is developed to establish the relationship between the critical gyration radius k of the primary component and the mass ratio (q) by considering the different dimensionless gyration radii of main-sequence stars with varying masses. The next step involves obtaining the low mass ratio limit ( q min = 0.038 â¼ 0.041 for overcontact degree f = 0 ~ 1) of W UMa-type contact binaries. Furthermore, the radial density distributions are estimated within the range of 0.3 M â â¼ 4.0 M â , based on the mass-radius relationship of main-sequence stars. Subsequently, the physical meaning of the minimum k value is proposed, which leads to an explanation for the cause of the minimum mass ratio. Finally, a stability criterion is proposed, which is based on both the mass ratio (q) and the total mass of the two components ( M tot ).
RESUMEN
BACKGROUND: Sporadic parathyroid adenoma (PA) is the most common cause of hyperparathyroidism, yet the mechanisms involved in its pathogenesis remain incompletely understood. METHODS: Surgically removed PA samples, along with normal parathyroid gland (PG) tissues that were incidentally dissected during total thyroidectomy, were analysed using single-cell RNA-sequencing with the 10× Genomics Chromium Droplet platform and Cell Ranger software. Gene set variation analysis was conducted to characterise hallmark pathway gene signatures, and single-cell regulatory network inference and clustering were utilised to analyse transcription factor regulons. Immunohistochemistry and immunofluorescence were performed to validate cellular components of PA tissues. siRNA knockdown and gene overexpression, alongside quantitative polymerase chain reaction, Western blotting and cell proliferation assays, were conducted for functional investigations. RESULTS: There was a pervasive increase in gene transcription in PA cells (PACs) compared with PG cells. This is associated with high expression of histone-lysine N-methyltransferase 2A (KMT2A). High KMT2A levels potentially contribute to promoting PAC proliferation through upregulation of the proto-oncogene CCND2, which is mediated by the transcription factors signal transducer and activator of transcription 3 (STAT3) and GATA binding protein 3 (GATA3). PA tissues are heavily infiltrated with myeloid cells, while fibroblasts, endothelial cells and macrophages in PA tissues are commonly enriched with proinflammatory gene signatures relative to their counterparts in PG tissues. CONCLUSIONS: We revealed the previously underappreciated involvement of the KMT2AâSTAT3/GATA3âCCND2 axis and chronic inflammation in the pathogenesis of PA. These findings underscore the therapeutic promise of KMT2A inhibition and anti-inflammatory strategies, highlighting the need for future investigations to translate these molecular insights into practical applications. HIGHLIGHTS: Single-cell RNA-sequencing reveals a transcriptome catalogue comparing sporadic parathyroid adenomas (PAs) with normal parathyroid glands. PA cells show a pervasive increase in gene expression linked to KMT2A upregulation. KMT2A-mediated STAT3 and GATA3 upregulation is key to promoting PA cell proliferation via cyclin D2. PAs exhibit a proinflammatory microenvironment, suggesting a potential role of chronic inflammation in PA pathogenesis.
Asunto(s)
Adenoma , N-Metiltransferasa de Histona-Lisina , Inflamación , Neoplasias de las Paratiroides , Humanos , Adenoma/genética , Adenoma/metabolismo , Adenoma/patología , Proliferación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Inflamación/genética , Inflamación/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Neoplasias de las Paratiroides/genética , Neoplasias de las Paratiroides/metabolismo , Neoplasias de las Paratiroides/patologíaRESUMEN
Patients with triple-negative breast cancer (TNBC) have a poor prognosis due to the lack of effective molecular targets for therapeutic intervention. Here we found that the long noncoding RNA (lncRNA) MILIP supports TNBC cell survival, proliferation, and tumorigenicity by complexing with transfer RNAs (tRNA) to promote protein production, thus representing a potential therapeutic target in TNBC. MILIP was expressed at high levels in TNBC cells that commonly harbor loss-of-function mutations of the tumor suppressor p53, and MILIP silencing suppressed TNBC cell viability and xenograft growth, indicating that MILIP functions distinctively in TNBC beyond its established role in repressing p53 in other types of cancers. Mechanistic investigations revealed that MILIP interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) and formed an RNA-RNA duplex with the type II tRNAs tRNALeu and tRNASer through their variable loops, which facilitated the binding of eEF1α1 to these tRNAs. Disrupting the interaction between MILIP and eEF1α1 or tRNAs diminished protein synthesis and cell viability. Targeting MILIP inhibited TNBC growth and cooperated with the clinically available protein synthesis inhibitor omacetaxine mepesuccinate in vivo. Collectively, these results identify MILIP as an RNA translation elongation factor that promotes protein production in TNBC cells and reveal the therapeutic potential of targeting MILIP, alone and in combination with other types of protein synthesis inhibitors, for TNBC treatment. SIGNIFICANCE: LncRNA MILIP plays a key role in supporting protein production in TNBC by forming complexes with tRNAs and eEF1α1, which confers sensitivity to combined MILIP targeting and protein synthesis inhibitors.
Asunto(s)
Proliferación Celular , Factor 1 de Elongación Peptídica , Biosíntesis de Proteínas , ARN Largo no Codificante , ARN de Transferencia , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Femenino , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Animales , Ratones , Factor 1 de Elongación Peptídica/metabolismo , Factor 1 de Elongación Peptídica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Regulación Neoplásica de la Expresión GénicaRESUMEN
ABSTRACT: The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely because of the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor growth arrest and DNA damage-inducible 45 alpha (GADD45A) is implicated in poor clinical outcomes, but its role in LSCs and AML pathogenesis is unknown. Here, we define GADD45A as a key downstream target of G protein-coupled receptor (LGR)4 pathway and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo, and reduces levels of reactive oxygen species (ROS), accompanied by a decreased response to ROS-associated genotoxic agents (eg, ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype on serial transplantation in mice. Our single-cell cellular indexing of transcriptomes and epitopes by sequencing analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification, such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in patients with AML. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.
Asunto(s)
Proteínas de Ciclo Celular , Ferroptosis , Leucemia Mieloide Aguda , Células Madre Neoplásicas , Animales , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Ratones , Humanos , Ferroptosis/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteinas GADD45RESUMEN
The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.
Asunto(s)
Proliferación Celular , Células Madre Mesenquimatosas , Ovario , Femenino , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Fertilidad/efectos de los fármacos , Receptores de Neuropéptido/metabolismo , Humanos , Regulación Alostérica/efectos de los fármacos , Receptores de Ghrelina/metabolismo , Cricetinae , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , DimerizaciónRESUMEN
The Chinese tree shrew ( Tupaia belangeri chinensis), a member of the mammalian order Scandentia, exhibits considerable similarities with primates, including humans, in aspects of its nervous, immune, and metabolic systems. These similarities have established the tree shrew as a promising experimental model for biomedical research on cancer, infectious diseases, metabolic disorders, and mental health conditions. Herein, we used meta-transcriptomic sequencing to analyze plasma, as well as oral and anal swab samples, from 105 healthy asymptomatic tree shrews to identify the presence of potential zoonotic viruses. In total, eight mammalian viruses with complete genomes were identified, belonging to six viral families, including Flaviviridae, Hepeviridae, Parvovirinae, Picornaviridae, Sedoreoviridae, and Spinareoviridae. Notably, the presence of rotavirus was recorded in tree shrews for the first time. Three viruses - hepacivirus 1, parvovirus, and picornavirus - exhibited low genetic similarity (<70%) with previously reported viruses at the whole-genome scale, indicating novelty. Conversely, three other viruses - hepacivirus 2, hepatovirus A and hepevirus - exhibited high similarity (>94%) to known viral strains. Phylogenetic analyses also revealed that the rotavirus and mammalian orthoreovirus identified in this study may be novel reassortants. These findings provide insights into the diverse viral spectrum present in captive Chinese tree shrews, highlighting the necessity for further research into their potential for cross-species transmission.
Asunto(s)
Tupaia , Virus , Animales , Filogenia , Primates , Musarañas , Tupaia/fisiología , TupaiidaeRESUMEN
Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.
Asunto(s)
Hipertensión Renal , Nefritis , Humanos , Inflamación , CitocinasRESUMEN
Orientation regulation of nanoparticles in a suspension by an electric field is a powerful tool to tune its mechanical, thermal, optical, electrical properties etc. However, how molecular modification can affect the orientation of two-dimensional nanoparticles is still unclear. In this paper, the influence of molecular modification on the orientation of graphene nanosheets (GNS) in water was investigated through theoretical analyses and molecular dynamics (MD) simulations. Firstly, a new orientation angle model was proposed, which considers hydration effects, dipole moments and resistance torque. Then, MD simulations were conducted to investigate the effects of position, direction, type, and number of functional groups on the orientation of GNS. The trend observed in MD simulations is consistent with the proposed theoretical model. The results reveal that, under the combined influence of the dipole moment and hydration effects, the modification with hydrophilic functional groups can reduce the orientation angle from 21.31° to 8.34°, while the modification with hydrophobic functional groups increases it to 26.43°. Among the hydrophilic functional groups, orientation of hydroxylated GNS is the best. With an increase in the number of hydroxyl groups, orientation angle is decreased from 12.61° to 8.34°. This work can provide valuable guidance for the design of high-performance suspensions and composites, such as thermal smart materials with adjustable thermal conductivity and intelligent devices with tailored capabilities.
RESUMEN
OBJECTIVE: To analyze the current treatment status and prognostic regression of the chronic NK cell lymphoproliferative disorder (CLPD-NK). METHODS: We retrospectively analyzed the clinical features, treatment and prognosis of 18 patients with CLPD-NK who were treated at our Hospital between September 2016 and September 2022. RESULTS: Eighteen patients were included: three patients were treated with chemotherapy, five patients underwent immune-related therapy, one patient was treated with glucocorticoids alone, five patients were administered granulocyte colony-stimulating factor, blood transfusion therapy, or anti-infection therapy, followed by observation and follow-up, and four patients were observed without treatment. Fifteen patients survived, including two patients who achieved complete remission (CR) and seven patients who achieved partial remission (PR), of whom one patient progressed to Aggressive NK-cell leukemia (ANKL) and sustained remission after multiple lines of treatment; three patients were not reviewed, of which one patient was still in active disease, three patients developed hemophagocytic syndrome during treatment and eventually died, one of them had positive Epstein-Barr virus (EBV) expression. The 5-years overall survival rate was 83%. CONCLUSION: Most patients with CLPD-NK have inert progression and a good prognosis, whereas some patients have a poor prognosis after progressing to ANKL and combined with hemophagocytic syndrome. Abnormal NK cells invading the center suggest a high possibility of ANKL development, and immunosuppressants and hormones are effective treatments for this disease.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Leucemia Linfocítica Granular Grande , Leucemia , Linfohistiocitosis Hemofagocítica , Trastornos Linfoproliferativos , Humanos , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Estudios Retrospectivos , Trastornos Linfoproliferativos/diagnóstico , Trastornos Linfoproliferativos/terapia , Pronóstico , Células Asesinas Naturales/metabolismo , Enfermedad Crónica , Leucemia/metabolismoRESUMEN
BACKGROUND: Distant metastasis is the major cause of lung adenocarcinoma (LUAD)-associated mortality. However, molecular mechanisms involved in LUAD metastasis remain to be fully understood. While the role of long non-coding RNAs (lncRNAs) in cancer development, progression, and treatment resistance is being increasingly appreciated, the list of dysregulated lncRNAs that contribute to LUAD pathogenesis is also rapidly expanding. METHODS: Bioinformatics analysis was conducted to interrogate publicly available LUAD datasets. In situ hybridization and qRT-PCR assays were used to test lncRNA expression in human LUAD tissues and cell lines, respectively. Wound healing as well as transwell migration and invasion assays were employed to examine LUAD cell migration and invasion in vitro. LUAD metastasis was examined using mouse models in vivo. RNA pulldown and RNA immunoprecipitation were carried out to test RNA-protein associations. Cycloheximide-chase assays were performed to monitor protein turnover rates and Western blotting was employed to test protein expression. RESULTS: The expression of the lncRNA LINC01559 was commonly upregulated in LUADs, in particular, in those with distant metastasis. High LINC01559 expression was associated with poor outcome of LUAD patients and was potentially an independent prognostic factor. Knockdown of LINC01559 diminished the potential of LUAD cell migration and invasion in vitro and reduced the formation of LUAD metastatic lesions in vivo. Mechanistically, LINC01559 binds to vimentin and prevents its ubiquitination and proteasomal degradation, leading to promotion of LUAD cell migration, invasion, and metastasis. CONCLUSION: LINC01559 plays an important role in LUAD metastasis through stabilizing vimentin. The expression of LINC01559 is potentially an independent prognostic factor of LUAD patients, and LINC01559 targeting may represent a novel avenue for the treatment of late-stage LUAD.
RESUMEN
There is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase. Furthermore, exposing several generations of mice to a high fat diet results in a decrease in the expression of Wt1, a transcription factor upstream of the enzymes that synthesize retinoic acid. These effects can be rescued by injecting adeno-associated virus 9-Wt1 into the mouse testes of the offspring. Additionally, multigenerational paternal high-fat diet progressively increases METTL3 and Wt1 N6-methyladenosine levels in the testes of offspring mice. Mechanistically, treating the fathers with STM2457, a METTL3 inhibitor, restores obesity-reduced sperm count, and decreases Wt1 N6-methyladenosine level in the mouse testes of the offspring. A case-controlled study shows that human donors who are overweight or obese exhibit elevated N6-methyladenosine levels in sperm and decreased sperm concentration. Collectively, these results indicate that multigenerational paternal obesity enhances the susceptibility of the offspring to spermatogenesis disorders by increasing METTL3-mediated Wt1 N6-methyladenosine modification.
Asunto(s)
Infertilidad Masculina , Análisis de Semen , Animales , Humanos , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Padre , Infertilidad Masculina/genética , Metiltransferasas , Obesidad/metabolismo , Semen/metabolismo , TretinoinaRESUMEN
BACKGROUND: Malnutrition is a critical issue among older inpatients, yet limited large-scale research related to this issue has been conducted in China. This study aimed to examine the nutritional status and support of older inpatients in China, assess the associations between disease categories and malnutrition on admission, and explore effective nutritional intervention. METHODS: A total of 24,139 older participants from the China Nutrition Fundamental Data 2020 Project were included. Malnutrition was measured by the Global Leadership Initiative on Malnutrition criteria. Adjusted odds ratios (aORs) were calculated using logistic analysis. RESULTS: The overall frequency of malnutrition on admission was 18.9%. Participants with infections were more likely to have malnutrition (aOR = 1.929, 95% CI 1.486-2.504). Risks that were also noted for malnutrition included neoplasms (aOR = 1.822, 95% CI 1.697-1.957), hemic and lymphatic diseases (aOR = 1.671, 95% CI 1.361-2.051), nervous system diseases (aOR = 1.222, 95% CI 1.126-1.326), respiratory diseases (aOR = 1.613, 95% CI 1.490-1.746), and digestive system diseases (aOR = 1.462, 95% CI 1.357-1.577). Further, 32.26% inpatients with malnutrition during hospitalization didn't receive nutritional support. Oral nutrition supplements, enteral tube feeding, and parenteral nutrition were associated with stable or improved nutritional status. CONCLUSIONS: Older inpatients were at a high risk for malnutrition but did not receive adequate nutritional intervention. More resources and attention need to be devoted to the nutritional status of older inpatients and targeted nutritional support.