Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 392, 2024 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-39490995

RESUMEN

BACKGROUND: Acetaminophen (APAP) overdose is a significant cause of drug-induced liver injury (DILI). N-acetylcysteine (NAC) is the first-line agent used in the clinic. However, it rarely benefits patients with advanced APAP toxicity. Mesenchymal stromal cells (MSCs) have demonstrated potential in treating DILI. However, the specific mechanism by which MSCs protect against APAP-induced liver injury remains unclear. METHODS: APAP was injected intraperitoneally to induce a liver injury model. We then detected histopathology, biochemical indices, and inflammatory cytokine levels to assess the efficacy of MSCs and MSC extracellular vesicles (MSC-EVs). Flow cytometry was performed to reveal the immunoregulatory effects of MSCs and MSC-EVs on the neutrophils. RNA sequencing (RNA-Seq) of liver tissues was used to identify critical target genes for MSC treatment. RESULTS: MSC and MSC-EV treatment effectively alleviated APAP-induced liver injury and inhibited neutrophil infiltration. RNA-Seq analysis and ELISA data indicated that C-X-C motif chemokine 1 (CXCL1), a chemoattractant for neutrophils, was a key molecule in the MSC-mediated amelioration of APAP-induced liver damage. In addition, neutralization of CXCL1 reduced APAP-induced liver damage, which was accompanied by decreased neutrophil infiltration. Importantly, we verified that MSC-EV-derived miR-186-5p directly binds to the 3'-UTR of Cxcl1 to inhibit its expression in hepatocytes. The agomir miR-186-5p showed excellent potential for the treatment of DILI. CONCLUSIONS: Our findings suggest that MSCs and MSC-EVs are an effective approach to mitigate DILI. Targeting the miR-186-5p/CXCL1 axis is a promising approach to improve the efficacy of MSCs and MSC-EVs in the treatment of DILI.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Quimiocina CXCL1 , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , MicroARNs/metabolismo , MicroARNs/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Vesículas Extracelulares/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Ratones , Acetaminofén/efectos adversos , Humanos , Masculino , Ratones Endogámicos C57BL , Trasplante de Células Madre Mesenquimatosas/métodos
2.
Adv Sci (Weinh) ; 11(32): e2404171, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39031840

RESUMEN

Hepatic ischemia-reperfusion injury (HIRI) is a prevalent issue during liver resection and transplantation, with currently no cure or FDA-approved therapy. A promising drug, Cyclosporin A (CsA), ameliorates HIRI by maintaining mitochondrial homeostasis but has systemic side effects due to its low bioavailability and high dosage requirements. This study introduces a biomimetic CsA delivery system that directly targets hepatic lesions using mesenchymal stem cell (MSC) membrane-camouflaged liposomes. These hybrid nanovesicles (NVs), leveraging MSC-derived proteins, demonstrate efficient inflammatory chemotaxis, transendothelial migration, and drug-loading capacity. In a HIRI mouse model, the biomimetic NVs accumulated at liver injury sites entered hepatocytes, and significantly reduced liver damage and restore function using only one-tenth of the CsA dose typically required. Proteomic analysis verifies the protection mechanism, which includes reactive oxygen species inhibition, preservation of mitochondrial integrity, and reduced cellular apoptosis, suggesting potential for this biomimetic strategy in HIRI intervention.


Asunto(s)
Ciclosporina , Modelos Animales de Enfermedad , Liposomas , Células Madre Mesenquimatosas , Daño por Reperfusión , Animales , Ciclosporina/farmacología , Ciclosporina/administración & dosificación , Daño por Reperfusión/prevención & control , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Biomimética/métodos , Hígado/metabolismo , Hígado/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Masculino , Ratones Endogámicos C57BL
3.
Nat Commun ; 15(1): 4760, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834654

RESUMEN

Older livers are more prone to hepatic ischaemia/reperfusion injury (HIRI), which severely limits their utilization in liver transplantation. The potential mechanism remains unclear. Here, we demonstrate older livers exhibit increased ferroptosis during HIRI. Inhibiting ferroptosis significantly attenuates older HIRI phenotypes. Mass spectrometry reveals that fat mass and obesity-associated gene (FTO) expression is downregulated in older livers, especially during HIRI. Overexpressing FTO improves older HIRI phenotypes by inhibiting ferroptosis. Mechanistically, acyl-CoA synthetase long chain family 4 (ACSL4) and transferrin receptor protein 1 (TFRC), two key positive contributors to ferroptosis, are FTO targets. For ameliorative effect, FTO requires the inhibition of Acsl4 and Tfrc mRNA stability in a m6A-dependent manner. Furthermore, we demonstrate nicotinamide mononucleotide can upregulate FTO demethylase activity, suppressing ferroptosis and decreasing older HIRI. Collectively, these findings reveal an FTO-ACSL4/TFRC regulatory pathway that contributes to the pathogenesis of older HIRI, providing insight into the clinical translation of strategies related to the demethylase activity of FTO to improve graft function after older donor liver transplantation.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Coenzima A Ligasas , Ferroptosis , Hígado , Receptores de Transferrina , Daño por Reperfusión , Regulación hacia Arriba , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Animales , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Ferroptosis/genética , Hígado/metabolismo , Hígado/patología , Ratones , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Masculino , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Ratones Endogámicos C57BL , Humanos , Trasplante de Hígado , Estabilidad del ARN/genética , Antígenos CD
4.
Med Oncol ; 41(3): 75, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381181

RESUMEN

Lenvatinib is a multitargeted tyrosine kinase inhibitor capable of promoting apoptosis, suppressing angiogenesis, inhibiting tumor cell proliferation, and modulating the immune response. In multiple cancer types, lenvatinib has presented manageable safety and is currently approved as an effective first-line therapy. However, with the gradual increase in lenvatinib application, the inevitable progression of resistance to lenvatinib is becoming more prevalent. A series of recent researches have reported the mechanisms underlying the development of lenvatinib resistance in tumor therapy, which are related to the regulation of cell death or proliferation, histological transformation, metabolism, transport processes, and epigenetics. In this review, we aim to outline recent discoveries achieved in terms of the mechanisms and potential predictive biomarkers of lenvatinib resistance as well as to summarize untapped approaches available for improving the therapeutic efficacy of lenvatinib in patients with various types of cancers.


Asunto(s)
Apoptosis , Epigénesis Genética , Compuestos de Fenilurea , Quinolinas , Humanos , Biomarcadores , Proliferación Celular
5.
Hepatology ; 79(3): 589-605, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37695548

RESUMEN

BACKGROUND AND AIMS: Immune cells play a crucial role in liver aging. However, the impact of dynamic changes in the local immune microenvironment on age-related liver injury remains poorly understood. We aimed to characterize intrahepatic immune cells at different ages to investigate key mechanisms associated with liver aging. APPROACH AND RESULTS: We carried out single-cell RNA sequencing on mouse liver tissues at 4 different ages, namely, the newborn, suckling, young, and aged stages. The transcriptomic landscape, cellular classification, and intercellular communication were analyzed. We confirmed the findings by multiplex immunofluorescence staining, flow cytometry, in vitro functional experiments, and chimeric animal models. Nine subsets of 89,542 immune cells with unique properties were identified, of which Cxcl2+ macrophages within the monocyte/macrophage subset were preferentially enriched in the aged liver. Cxcl2+ macrophages presented a senescence-associated secretory phenotype and recruited neutrophils to the aged liver through the CXCL2-CXCR2 axis. Through the secretion of IL-1ß and TNF-α, Cxcl2+ macrophages stimulated neutrophil extracellular traps formation. Targeting the CXCL2-CXCR2 axis limited the neutrophils migration toward the liver and attenuated age-related liver injury. Moreover, the relationship between Cxcl2+ macrophages and neutrophils in age-related liver injury was further validated by human liver transplantation samples. CONCLUSIONS: This in-depth study illustrates that the mechanism of Cxcl2+ macrophage-driven neutrophil activation involves the CXCL2-CXCR2 axis and provides a potential therapeutic strategy for age-related liver injury.


Asunto(s)
Hígado , Neutrófilos , Ratones , Animales , Recién Nacido , Humanos , Anciano , Quimiocina CXCL2 , Macrófagos , Envejecimiento
6.
J Hepatol ; 79(6): 1418-1434, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37604269

RESUMEN

BACKGROUND & AIMS: Integrin αv (ITGAV, CD51) is regarded as a key component in multiple stages of tumor progression. However, the clinical failure of cilengitide, a specific inhibitor targeting surface CD51, suggests the importance of yet-unknown mechanisms by which CD51 promotes tumor progression. METHODS: In this study, we used several hepatocellular carcinoma (HCC) cell lines and murine hepatoma cell lines. To investigate the role of CD51 on HCC progression, we used a 3D invasion assay and in vivo bioluminescence imaging. We used periostin-knockout transgenic mice to uncover the role of the tumor microenvironment on CD51 cleavage. Moreover, we used several clinically relevant HCC models, including patient-derived organoids and patient-derived xenografts, to evaluate the therapeutic efficacy of cilengitide in combination with the γ-secretase inhibitor LY3039478. RESULTS: We found that CD51 could undergo transmembrane cleavage by γ-secretase to produce a functional intracellular domain (CD51-ICD). The cleaved CD51-ICD facilitated HCC invasion and metastasis by promoting the transcription of oxidative phosphorylation-related genes. Furthermore, we identified cancer-associated fibroblast-derived periostin as the major driver of CD51 cleavage. Lastly, we showed that cilengitide-based therapy led to a dramatic therapeutic effect when supplemented with LY3039478 in both patient-derived organoid and xenograft models. CONCLUSIONS: In summary, we revealed previously unrecognized mechanisms by which CD51 is involved in HCC progression and uncovered the underlying cause of cilengitide treatment failure, as well as providing evidence supporting the translational prospects of combined CD51-targeted therapy in the clinic. IMPACT AND IMPLICATIONS: Integrin αv (CD51) is a widely recognized pro-tumoral molecule that plays a crucial role in various stages of tumor progression, making it a promising therapeutic target. However, despite early promising results, cilengitide, a specific antagonist of CD51, failed in a phase III clinical trial. This prompted further investigation into the underlying mechanisms of CD51's effects. This study reveals that the γ-secretase complex directly cleaves CD51 to produce an intracellular domain (CD51-ICD), which functions as a pro-tumoral transcriptional regulator and can bypass the inhibitory effects of cilengitide by entering the nucleus. Furthermore, the localization of CD51 in the nucleus is significantly associated with the prognosis of patients with HCC. These findings provide a theoretical basis for re-evaluating cilengitide in clinical settings and highlight the importance of identifying a more precise patient subpopulation for future clinical trials targeting CD51.


Asunto(s)
Carcinoma Hepatocelular , Integrina alfaV , Neoplasias Hepáticas Experimentales , Neoplasias Hepáticas , Animales , Humanos , Ratones , Secretasas de la Proteína Precursora del Amiloide , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Integrina alfaV/genética , Integrina alfaV/metabolismo , Neoplasias Hepáticas/genética , Microambiente Tumoral
7.
Front Oncol ; 13: 1098686, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409255

RESUMEN

Background: The purpose of this study is to evaluate the effects of chemotherapy and radiotherapy on the prognosis of unresectable HCC patients with portal and/or hepatic vein invasion. Methods: A retrospective analysis of unresectable HCC patients with portal and/or hepatic vein invasion registered in the Surveillance, Epidemiology, End Results (SEER) database was performed. The propensity score-matching (PSM) method was used to balance differences between groups. Overall survival (OS) and cancer-specific survival (CSS) were the interesting endpoints. OS was calculated from the date of diagnosis to the date of death caused by any cause or the last follow-up. CSS was defined as the interval between the date of diagnosis and date of death due only to HCC or last follow-up. OS and CSS were analyzed by using Kaplan-Meier analysis, Cox proportional hazards model, and Fine-Gray competing-risk model. Results: A total of 2,614 patients were included. 50.2% patients received chemotherapy or radiotherapy and 7.5% patients received both chemotherapy and radiotherapy. Compared to the untreated group, chemotherapy or radiotherapy (COR) (HR = 0.538, 95% CI 0.495-0.585, p < 0.001) and chemotherapy and radiotherapy (CAR) (HR = 0.371, 95% CI 0.316-0.436, p < 0.001) showed better OS. In the COR group, Cox analysis results showed AFP, tumor size, N stage and M stage were independent risk factor of OS. Competing-risk analysis results showed AFP, tumor size and M stage were independent risk factor of CSS. In the CAR group, AFP and M stage were independent risk factors of OS. Competing-risk analysis results showed M stage were independent risk factor of CSS. Kaplan Meier analysis showed chemotherapy combined with radiotherapy significantly improves OS (10.0 vs. 5.0 months, p < 0.001) and CSS (10.0 vs. 6.0 months, p = 0.006) than monotherapy. Conclusion: AFP positive and distant metastasis are the main risk factors affecting OS and CSS of unresectable HCC patients with portal and/or hepatic vein invasion. Chemotherapy combined with radiotherapy significantly improves OS and CSS of unresectable HCC patients with portal and/or hepatic vein invasion.

8.
Cell Death Discov ; 9(1): 273, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507381

RESUMEN

The therapeutic potential of umbilical cord-mesenchymal stem cell (UC-MSC) transplantation in liver fibrosis has been highlighted. However, the fate of transplanted MSCs in the fibrotic microenvironment remains unclear. In this study, we aim to uncover the fate of transplanted MSCs and develop targeting strategies that could enhance the therapeutic efficacy of MSC therapy in liver fibrosis. We used human UC-MSCs as the study object. For in vitro experiments, we stimulated UC-MSCs with several fibrotic-related factors (Liver fibrotic Factors, LF), including TGFß, TNFα and IFNγ for downstream investigations. We co-cultured LF-treated UC-MSCs with hepatic stellate cell line LX-2 to assess the anti-fibrotic effect. We showed that upon LF stimulation, UC-MSCs exhibited reduced anti-fibrotic activity and underwent rapid senescence. Pathway analysis showed that JAK/STAT3 signaling was highly activated upon LF stimulation, which significantly elevated senescence-associated secretory phenotype (SASP) and senescence in UC-MSCs and could be reversed by a specific JAK inhibitor AG490. Moreover, using both carbon tetrachloride (CCl4) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induce fibrosis models, we demonstrated that AG490 pretreatment promoted UC-MSCs survival within the fibrotic liver microenvironment and exhibited enhance therapeutic efficacy. Overall, we showed that targeting MSC senescence in vivo through AG490 pretreatment could enhance the anti-fibrotic activities of UC-MSCs.

9.
J Control Release ; 356: 402-415, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36858264

RESUMEN

Aging is one of the critical factors to impair liver regeneration leading to a high incidence of severe complications after hepatic surgery in the elderly population without any effective treatment for clinical administration. As cell-free nanotherapeutics, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been demonstrated the therapeutic potentials on liver diseases. However, the effects of MSC-EVs on the proliferation of aged hepatocytes are largely unclear. In this study, we found MSCs could reduce the expression of senescence-associated markers in the liver and stimulate its regeneration in aged mice after receiving a two-thirds partial hepatectomy (PHx) through their secreted MSC-EVs. Using RNA-Seq and AAV9 vector, we mechanistically found that these effects of UC-MSC-EVs partially attributed to inducing Atg4B-related mitophagy. This effect repairs the mitochondrial status and functions of aged hepatocytes to promote their proliferation. And protein mass spectrum analysis uncovered that DEAD-Box Helicase 5 (DDX5) enriches in UC-MSC-EVs, which interacts with E2F1 to facilitate its nuclear translocation for activating the expression of Atg4B. Collectively, our data show that MSC-EVs act nanotherapeutic potentials in anti-senescence and promoting regeneration of aged liver by transferring DDX5 to regulate E2F1-Atg4B signaling pathway that induce mitophagy, which highlights the clinical application valuation of MSC-EVs for preventing severe complications in aged population receiving liver surgery.


Asunto(s)
Vesículas Extracelulares , Hepatopatías , Anciano , Humanos , Ratones , Animales , Regeneración Hepática , Hepatocitos/metabolismo , Vesículas Extracelulares/metabolismo , ARN Helicasas DEAD-box/metabolismo
10.
Ann Transl Med ; 10(15): 818, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36035003

RESUMEN

Background: Nonalcoholic fatty liver disease (NAFLD) has been linked to gallstone disease (GSD) in observational studies; however, the relationships between certain lipid profiles and GSD remain unclear. Methods: We adopted a two-sample Mendelian randomization (MR) framework by applying different statistical methods to assess causalities between lipid profiles and GSD. We identified single-nucleotide polymorphisms (SNPs) for blood lipids and NAFLD from separate previous genome-wide association studies (GWASs). Results: We retrieved GSD SNPs attributed to 10,520 cases and 361,194 controls and validated our estimates using GWAS summary data from UK Biobank. We also performed sex-stratified analyses. Based on the summary estimates of 41, 59, 35, and 2 SNPs for low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), triglycerides (TGs), and NAFLD, respectively, we found no evidence of a causal relationship between genetically-predicted lipid profiles and GSD. The odds ratios were 0.995 for LDLC [95% confidence interval (CI): 0.994-0.998] per 0.98 mmol/L, 0.999 for HDLC (95% CI: 0.996-1.003) per 0.41 mmol/L, 0.997 for TGs (95% CI: 0.994-1.001) per 1 mmol/L, and 0.993 for NAFLD (95% CI: 0.984-1.003). No evidence of associations between lipid profile s and GSD in validation MR analyses or the sex-stratification analyses was noted. Conclusions: Genetically predicted hyperlipidemia or NAFLD is not causally associated with GSD.

11.
Bioengineered ; 13(5): 12738-12748, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35609322

RESUMEN

Phosphatidylinositol Transfer Protein, Membrane-Associated 3 (PITPNM3) often bind with chemokine (C-C motif) ligand 18 (CCL18) to promote tumor progression. However, the role of PITPNM3 in intrahepatic cholangiocarcinoma (ICC) is unclear. We first searched GEPIA database and detected the PITPNM3 expression using immunohistochemistry and real-time quantitative PCR. The results showed that PITPNM3 is high expression in ICC tissues and cells. Then we investigated the cell function of CLL18 and PITPNM3 through cell clone formation assay and transwell assay. The results indicated that CCL18 treatment promoted the proliferation, migration, and invasion of ICC cells. Silence of PITPNM3 reversed the effect of CCL18 on cell function. Simultaneously, we detected key protein expression of forkhead box O1 (FOXO1) and nuclear factor kappa B (NF-KB) through western blotting and found that CCL18 activated NF-KB pathway while inhibited FOXO1 pathway, the effect of which were attenuated by silence of PITPNM3. Finally, we confirmed which pathway affected the cell function using inhibitor of FOXO1 (AS1842856) and activator of NF-KB (Asatone). The results showed that AS1842856, not Asatone, relieved the inhibitory effect of si-PITPNM3 on the cell function of CCL18. In short, CCL18 treatment activated PITPNM3 to promote the proliferation, migration, and invasion of ICC via FOXO1 signaling pathway. These results provided a new insight for the diagnosis and therapy of ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Colangiocarcinoma/genética , Humanos , Ligandos , FN-kappa B/metabolismo
12.
Biomaterials ; 284: 121486, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35447404

RESUMEN

As nanotherapeutics, mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) are considered a potent alternative for whole-cell therapy and are gradually entering the clinical field of liver diseases. In this study, neutrophil extracellular traps (NETs) formation in liver tissue was verified as a critical factor for liver ischaemia-reperfusion injury (IRI) in both clinical samples and animal models. Human umbilical cord-derived MSC-EVs (hUC-MSC-EVs) might function to reduce the NETs formation and subsequently improve liver IRI. Mechanistically, we showed that hUC-MSC-EVs contain functional mitochondria that are transferred to intrahepatic neutrophils. This effect triggers mitochondrial fusion and subsequently restores the mitochondrial status and functions in neutrophils to reduce NETs formation. Collectively, our findings suggest that MSC-EVs exert a nanotherapeutic effect on inhibiting local NETs formation by transferring functional mitochondria to intrahepatic neutrophils and repairing their mitochondrial function, which highlights the therapeutic value of hUC-MSC-EVs for liver IRI.


Asunto(s)
Trampas Extracelulares , Vesículas Extracelulares , Células Madre Mesenquimatosas , Daño por Reperfusión , Animales , Vesículas Extracelulares/metabolismo , Hígado , Células Madre Mesenquimatosas/metabolismo , Mitocondrias , Daño por Reperfusión/metabolismo , Daño por Reperfusión/terapia
13.
Asian J Surg ; 45(1): 435-440, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426060

RESUMEN

BACKGROUND: CTCs play a critical role in the diagnosis and prognosis of liver cancer. However, there are few studies on whether different types of CTCs can predict the prognosis in patients with HCC following LT. METHODS: Retrospective data including CTCs detected by the CanPatrolTM platform combined with RNA-ISH were collected and analyzed on 56 patients from December 2016 to December 2019 at the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China. RESULTS: During the study period, fifty-six patients (51 males, 5 females) were included with an mean age of 52 ± 9 years. The 1-, 2- and 3-year recurrence rates of postoperative interstitial CTC-positive and CTC-negative groups were 21.7% vs 10.8%, 37.5% vs 10.8% and 55.5% vs 10.8%, confirming a statistically significant difference between the 2 groups (p = 0.044). The 1-, 2- and 3-year recurrence rates of the increasing interstitial CTCs group were 25.2%, 36.9% and 66.9%, while 12.6%, 24.4% and 24.4% in the decreasing and unchanged group, indicating a significant difference (p = 0.038). CONCLUSION: CanPatrolTM platform presents a superior analytical sensitivity, and may be used as a dynamic monitoring tool for CTCs. And interstitial CTCs which are more aggressive and metastatic caused by EMT can be regarded as a predictor of post-transplant tumor recurrence after LT for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trasplante de Hígado , Células Neoplásicas Circulantes , Adulto , Biomarcadores de Tumor , Carcinoma Hepatocelular/cirugía , Femenino , Humanos , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Pronóstico , Estudios Retrospectivos
14.
Clin Hemorheol Microcirc ; 79(4): 519-530, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366329

RESUMEN

BACKGROUND: Biliary ischaemia is an important factor in the pathogenesis of non-anastomotic biliary stricture (NAS) after liver transplantation (LT). Contrast-enhanced ultrasound (CEUS) can be used to detect biliary ischaemia, but no study has examined the utility of CEUS in predicting NAS. OBJECTIVE: To evaluate whether repeated CEUS as a non-invasive method of biliary ischaemia can identify NAS. METHODS: Consecutive LT patients who underwent CEUS examinations at 1-4 weeks after LT from September 2012 to December 2015 at our institution were included. The CEUS images and clinical data were analysed. RESULTS: Among 116 eligible LT patients, 39 (33.6%) were diagnosed with NAS within 1 year after LT. The patients with NAS had a significantly higher CEUS score at weeks 2-4 (all P < 0.05) and a higher slope of CEUS score progression (0.480 vs -0.044, P < 0.001). The accuracy of CEUS in identifying NAS improved over time after LT, reaching its maximum at week 4, with a sensitivity of 66.7%, a specificity of 87.9%, a positive predictive value (PPV) of 75.9%, a negative predictive value (NPV) of 82.3%, and an accuracy of 80.2%in the full cohort when a CEUS score≥3 was used as the cut-off. Multivariate analysis identified gamma-glutamyl transpeptidase (GGT), alanine transaminase (ALT) and the CEUS score at week 4 as independent predictors of NAS. In the task of identifying NAS, an NAS score combining the above 3 variables at week 4 showed areas under the receiver operating characteristic curve of 0.88 (95%CI, 0.78-0.99) in the estimation group (n = 60) and 0.82 (95%CI, 0.69-0.96) in the validation group (n = 56). An NAS score cut-off of 0.396 identified 87.2%of NAS cases in the estimation group, with a PPV of 93.3%; and 75.0%of NAS cases in the validation group, with a PPV of 58.8%. CONCLUSIONS: CEUS examination during the first 4 weeks is useful in assessing the risk of NAS within 1 year after LT. In particular, an NAS score combining the CEUS score, GGT level, and ALT level at week 4 can be used to accurately predict the risk of NAS in LT patients.


Asunto(s)
Trasplante de Hígado , Constricción Patológica/diagnóstico por imagen , Medios de Contraste , Humanos , Isquemia/diagnóstico por imagen , Trasplante de Hígado/efectos adversos , Estudios Retrospectivos , Ultrasonografía
15.
J Gastrointest Oncol ; 12(3): 1074-1085, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34295558

RESUMEN

BACKGROUND: This study aimed to investigate the relationship between the prognosis of patients with hepatocellular carcinoma (HCC) after liver transplantation and mammalian target of rapamycin (mTOR) pathway-related genes-TSC1/2. METHODS: We retrospectively analyzed the clinical data of 46 patients who underwent liver transplantation for HCC and performed next generation sequencing to analyze the relationship between the efficacy of sirolimus after liver transplantation for HCC and mutations in mTOR pathway-related genes, especially tuberous sclerosis complex (TSC) mutations. RESULTS: The average age of 46 patients with liver transplantation for HCC was 51±21 years. After surgery, 35 patients received an anti-rejection/anti-tumor regimen that included sirolimus, and 11 patients did not receive sirolimus. There was no significant difference in survival rate between the two groups (P=0.761). The gene sequencing results showed mTOR-related pathway mutations in 10 patients, of whom five (10.9%) had TSC1/2 mutations. Of the 35 patients using sirolimus, those with mTOR-related mutations had significantly better survival rates than patients without mTOR-related mutations (P=0.016). CONCLUSIONS: According to genetic sequencing results, a personalized treatment plan for specific genetic mutations should be selected in patients undergoing liver transplantation for HCC. Patients with mTOR-related gene mutations, especially TSC mutations, can gain significant benefits from the use of mTOR inhibitors such as sirolimus.

16.
Ann Transl Med ; 9(7): 555, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33987253

RESUMEN

BACKGROUND: Individualized prediction of survival after liver transplantation (LT) for patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) has not been well investigated. This study aimed to develop a prognostic nomogram for patients with HBV-ACLF undergoing LT. METHODS: The nomogram was derived from a retrospective study of 290 patients who underwent LT for HBV-ACLF at the Third Affiliated Hospital of Sun Yat-sen University between January 2012 and December 2017. Concordance index and determiner calibration curve was used to ascertain the predictive accuracy and discriminative ability of the nomogram. The predictive performance of the nomogram was compared with that of Child-Pugh score, model for end-stage liver disease (MELD), MELD-Na, chronic liver failure Consortium Organ Failure score (CLIF-C OFs), and CLIF-C ACLF. RESULTS: The 1-year mortality rate was 23.1% (67/290). The Cox multivariate analysis showed that risk factors for 1-year survival rate included white blood cell count, alanine aminotransferase/aspartate aminotransferase ratio, and the organ failure numbers. The determiner calibration curve showed good agreement between prediction of the nomogram and actual observation. The concordance index of the nomogram for predicting 1-year survival was 0.707, which was significantly higher than that of other prognostic models: Child-Pugh score (0.626), MELD (0.627), MELD-Na (0.583), CLIF-C OF (0.674), and comparable to that of CLIF-C ACLF (0.684). CONCLUSIONS: Our study developed a novel nomogram that could accurately predict individualized post-transplantation survival in patients with HBV-ACLF. The nomogram might be a useful tool for identifying HBV-ACLF patients who would benefit from LT.

17.
Stem Cell Res Ther ; 12(1): 244, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863383

RESUMEN

BACKGROUND: ABO-incompatible liver transplantation (ABO-i LT) has become a rescue therapeutic option for patients with severe hepatic failure. Although the use of rituximab greatly reduces the morbidity of antibody-mediated rejection (AMR), severe adverse effects, such as infection and biliary complications, still seriously threaten the survival of transplant recipients. The aim of this study was to evaluate the safety and feasibility of using mesenchymal stem cells (MSCs) to replace rituximab in ABO-i LT. METHODS: Twenty-two patients with severe hepatic failure undergoing ABO-i LT were enrolled and randomly divided into two groups: the MSC group and the rituximab group. The safety of the application of MSCs and the incidence of allograft rejection, including antibody-mediated rejection (AMR) and acute cellular rejection (ACR), were evaluated in both groups at the 2-year follow-up period as primary endpoints. Recipients and graft survival and other postoperative complications were compared as secondary endpoints. RESULTS: No severe MSC-related adverse events were observed during the trial. MSC treatment yielded comparable, if not better, results than rituximab at decreasing the incidence of acute rejection (9.1% vs 27.3%). Inspiringly, compared to those in the rituximab group, the rates of biliary complications (0% vs 45.5%) and infection (9.1% vs 81.8%) were significantly decreased in the MSC group. In addition, there were no significant differences in 2-year graft and recipient survival between the two groups (81.8% vs 72.7%). CONCLUSIONS: Our data show that MSC transfusion is comparable to rituximab treatment for AMR prophylaxis following ABO-i LT. Additionally, the results indicate that MSCs are more beneficial to the prevention of infection and biliary complications and may be introduced as a novel immunosuppressive approach for ABO-i LT. TRIAL REGISTRATION: Trial registration: chictr.org.cn , ChiCTR2000037732. Registered 31 August 2020- Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=57074 .


Asunto(s)
Trasplante de Hígado , Sistema del Grupo Sanguíneo ABO , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Humanos , Rituximab/uso terapéutico , Resultado del Tratamiento
18.
Adv Sci (Weinh) ; 7(18): 1903746, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32999825

RESUMEN

As a cause of postoperative complications and early hepatic failure after liver transplantation, liver ischemia/reperfusion injury (IRI) still has no effective treatment during clinical administration. Although the therapeutic potential of mesenchymal stem cells (MSCs) for liver IRI has been previously shown, the underlying mechanisms are not completely clear. It is accepted that MSC-derived extracellular vesicles (MSC-EVs) are newly uncovered messengers for intercellular communication. Herein, it is reported that umbilical cord-derived MSCs (UC-MSCs) improve liver IRI in mice through their secreted EVs. It is also visualized that UC-MSC-EVs mainly concentrate in liver after 6 h of reperfusion. Furthermore, UC-MSC-EVs are found to significantly modulate the membranous expression of CD154 of intrahepatic CD4+ T cells, which is an initiation of inflammatory response in liver and can aggravate liver IRI. Mechanistically, protein mass spectrum analysis is performed and it is revealed that Chaperonin containing TCP1 subunit 2 (CCT2) enriches in UC-MSC-EVs, which regulates the calcium channels to affect Ca2+ influx and suppress CD154 synthesis in CD4+ T cells. In conclusion, these results highlight the therapeutic potential of UC-MSC-EVs in attenuating liver IRI. This finding suggests that CCT2 from UC-MSC-EVs can modulate CD154 expression of intrahepatic CD4+ T cells during liver IRI through the Ca2+-calcineurin-NFAT1 signaling pathway.

19.
Cell Death Dis ; 11(4): 256, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312955

RESUMEN

Hepatocyte apoptosis is the main pathophysiological process underlying liver ischemia/reperfusion (I/R) injury. Mitochondrial abnormalities have a vital role in hepatocellular damage. The hepatoprotective effects of mesenchymal stem cells (MSCs) have been previously demonstrated. In this study, we aim to investigate the effect and potential mechanism of MSCs against liver I/R injury. Effects of MSCs were studied in mice liver I/R injury model and in a hypoxia/reoxygenation (H/R) model of L02 hepatocytes. The potential mechanisms of MSCs on these in vivo and in vitro I/R-induced hepatocellular apoptosis models were studies. Accompanied by the improvement of hepatic damage, MSCs exhibited capabilities of controlling mitochondrial quality, shown by reduced mitochondrial reactive oxygen species (mtROS) overproduction, decreased the accumulation of mitochondrial fragmentation, restored ATP generation and upregulated mitophagy. Furthermore, we descripted a potential mechanism of MSCs on upregulating mitophagy and found that the reduced Parkin and PINK1 expression and inactivated AMPKα pathway were observed in the liver tissue in I/R model. These effects were reversed by MSCs treatment. In vitro study showed that MSC-conditioned medium (MSC-CM) suppressed hepatocellular apoptosis and inhibited mtROS accumulation in the H/R environment. And these effects of MSC-CM were partially blocked after the cells were transfected with PINK1 siRNA or added with dorsomorphin. Collectively, our findings provide a novel pharmacological mechanism that MSCs exert hepatoprotective effect in liver I/R injury via upregulating PINK1-dependent mitophagy. In addition, this effect might be attributed to the modulation of AMPKα activation.


Asunto(s)
Apoptosis/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Isquemia/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
20.
Cancer Res Treat ; 52(2): 469-480, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31588704

RESUMEN

PURPOSE: Microtubule-associated protein 1 light chain 3B (LC3B) serves as a key component of autophagy, which is associated with the progression of carcinoma. Yet, it is still unclear whether LC3B is also an independent risk factor for intrahepatic cholangiocarcinoma (ICC). We aim to explore the predictive value of LC3B on prognosis of ICC, and to establish a novel and available nomogram to predict relapse-free survival (RFS) and overall survival (OS) for these patients after curative-intent hepatectomy. MATERIALS AND METHODS: From August 2004 to March 2017, 105 ICC patients were eligibly enrolled in the Third Affiliated Hospital of Sun Yat-sen University. Preoperative clinical information of enrolled patients was collected. Expression LC3B in the ICC specimen was detected by immunohistochemistry. RESULTS: The 5-year RFS and OS in this cohort were 15.7% and 29.6%, respectively. On multivariate Cox regression analysis, independent risk factors for 5-year OS were cancer antigen 125, microvascular invasion, LC3B expression and lymph node metastasis. Except for the above 4 factors, neutrophil/lymphocyte ratio and tumor differentiation were independent factors for 5-year RFS. The area under the curve of nomograms for OS and RFS were 0.820 and 0.747, respectively. CONCLUSION: The nomograms based on LC3B can be considered as effective models to predict postoperative survival for ICC patients.


Asunto(s)
Colangiocarcinoma/cirugía , Proteínas Asociadas a Microtúbulos/metabolismo , Nomogramas , Colangiocarcinoma/genética , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , Pronóstico , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA