Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.056
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1428147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957445

RESUMEN

Background: Amphiregulin (AR) is a growth factor that resembles the epidermal growth factor (EGF) and serves various functions in different cells. However, no systematic studies or reports on the role of AR in human oocytes have currently been performed or reported. This study aimed to explore the role of AR in human immature oocytes during in vitro maturation (IVM) and in vitro fertilization (IVF) in achieving better embryonic development and to provide a basis for the development of a pre-insemination culture medium specific for cumulus oocyte complexes (COCs). Methods: First, we examined the concentration of AR in the follicular fluid (FF) of patients who underwent routine IVF and explored the correlation between AR levels and oocyte maturation and subsequent embryonic development. Second, AR was added to the IVM medium to culture immature oocytes and investigate whether AR could improve the effects of IVM. Finally, we pioneered the use of a fertilization medium supplemented with AR for the pre-insemination culture of COCs to explore whether the involvement of AR can promote the maturation and fertilization of IVF oocytes, as well as subsequent embryonic development. Results: A total of 609 FF samples were examined, and a positive correlation between AR levels and blastocyst formation was observed. In our IVM study, the development potential and IVM rate of immature oocytes, as well as the fertilization rate of IVM oocytes in the AR-added groups, were ameliorated significantly compared to the control group (All P < 0.05). Only the IVM-50 group had a significantly higher blastocyst formation rate than the control group (P < 0.05). In the final IVF study, the maturation, fertilization, high-quality embryo, blastocyst formation, and high-quality blastocyst rates of the AR-added group were significantly higher than those of the control group (All P < 0.05). Conclusion: AR levels in the FF positively correlated with blastocyst formation, and AR involvement in pre-insemination cultures of COCs can effectively improve laboratory outcomes in IVF. Furthermore, AR can directly promote the in vitro maturation and developmental potential of human immature oocytes at an optimal concentration of 50 ng/ml.


Asunto(s)
Anfirregulina , Células del Cúmulo , Fertilización In Vitro , Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Humanos , Anfirregulina/metabolismo , Fertilización In Vitro/métodos , Femenino , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Adulto , Células del Cúmulo/metabolismo , Células del Cúmulo/efectos de los fármacos , Células del Cúmulo/citología , Líquido Folicular/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Embarazo , Medios de Cultivo/química , Técnicas de Cultivo de Embriones/métodos , Blastocisto/metabolismo , Blastocisto/efectos de los fármacos
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 559-565, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38948269

RESUMEN

Objective: Infertility affects approximately one-sixth of the people of childbearing age worldwide, causing not only economic burdens of treatment for families with fertility problems but also psychological stress for patients and presenting challenges to societal and economic development. Premature ovarian insufficiency (POI) refers to the loss of ovarian function in women before the age of 40 due to the depletion of follicles or decreased quality of remaining follicles, constituting a significant cause of female infertility. In recent years, with the help of the rapid development in genetic sequencing technology, it has been demonstrated that genetic factors play a crucial role in the onset of POI. Among the population suffering from POI, genetic studies have revealed that genes involved in processes such as meiosis, DNA damage repair, and mitosis account for approximately 37.4% of all pathogenic and potentially pathogenic genes identified. FA complementation group M (FANCM) is a group of genes involved in the damage repair of DNA interstrand crosslinks (ICLs), including FANCA-FANCW. Abnormalities in the FANCM genes are associated with female infertility and FANCM gene knockout mice also exhibit phenotypes similar to those of POI. During the genetic screening of POI patients, this study identified a suspicious variant in FANCM. This study aims to explore the pathogenic mechanisms of the FANCM genes of the FA pathway and their variants in the development of POI. We hope to help shed light on potential diagnostic and therapeutic strategies for the affected individuals. Methods: One POI patient was included in the study. The inclusion criteria for POI patients were as follows: women under 40 years old exhibiting two or more instances of basal serum follicle-stimulating hormone levels>25 IU/L (with a minimum interval of 4 weeks inbetween tests), alongside clinical symptoms of menstrual disorders, normal chromosomal karyotype analysis results, and exclusion of other known diseases that can lead to ovarian dysfunction. We conducted whole-exome sequencing for the POI patient and identified pathogenic genes by classifying variants according to the standards and guidelines established by the American College of Medical Genetics and Genomics (ACMG). Subsequently, the identified variants were validated through Sanger sequencing and subjected to bioinformatics analysis. Plasmids containing wild-type and mutant FANCM genes were constructed and introduced into 293T cells. The 293T cells transfected with wild-type and mutant human FANCM plasmids and pEGFP-C1 empty vector plasmids were designated as the EGFP FANCM-WT group, the EGFP FANCM-MUT group, and the EGFP group, respectively. To validate the production of truncated proteins, cell proteins were extracted 48 hours post-transfection from the three groups and confirmed using GFP antibody. In order to investigate the impact on DNA damage repair, immunofluorescence experiments were conducted 48 hours post-transfection in the EGFP FANCM-WT group and the EGFP FANCM-MUT group to examine whether the variant affected FANCM's ability to localize on chromatin. Mitomycin C was used to induce ICLs damage in vitro in both the EGFP FANCM-WT group and the EGFP FANCM-MUT group, which was followed by verification of its effect on ICLs damage repair using γ-H2AX antibody. Results: In a POI patient from a consanguineous family, we identified a homozygous variant in the FANCM gene, c.1152-1155del:p.Leu386Valfs*10. The patient presented with primary infertility, experiencing irregular menstruation since menarche at the age of 16. Hormonal evaluation revealed an FSH level of 26.79 IU/L and an anti-Müllerian hormone (AMH) level of 0.07 ng/mL. Vaginal ultrasound indicated unsatisfactory visualization of the ovaries on both sides and uterine dysplasia. The patient's parents were a consanguineous couple, with the mother having regular menstrual cycles. The patient had two sisters, one of whom passed away due to osteosarcoma, while the other exhibited irregular menstruation, had been diagnosed with ovarian insufficiency, and remained childless. Bioinformatics analysis revealed a deletion of four nucleotides (c.1152-1155del) in the exon 6 of the patient's FANCM gene. This variant resulted in a frameshift at codon 386, introducing a premature stop codon at codon 396, which ultimately led to the production of a truncated protein consisting of 395 amino acids. In vitro experiments demonstrated that this variant led to the production of a truncated FANCM protein of approximately 43 kDa and caused a defect in its nuclear localization, with the protein being present only in the cytoplasm. Following treatment with mitomycin C, there was a significant increase in γ-H2AX levels in 293T cells transfected with the mutant plasmid (P<0.01), indicating a statistically significant impairment of DNA damage repair capability caused by this variant. Conclusions: The homozygous variant in the FANCM gene, c.1152-1155del:p.Leu386Valfs*10, results in the production of a truncated FANCM protein. This truncation leads to the loss of its interaction site with the MHF1-MHF2 complex, preventing its entry into the nucleus and the subsequent recognition of DNA damage. Consequently, the localization of the FA core complex on chromatin is disrupted, impeding the normal activation of the FA pathway and reducing the cell's ability to repair damaged ICLs. By disrupting the rapid proliferation and meiotic division processes of primordial germ cells, the reserve of oocytes is depleted, thereby triggering premature ovarian insufficiency in females.


Asunto(s)
Insuficiencia Ovárica Primaria , Femenino , Insuficiencia Ovárica Primaria/genética , Humanos , Mutación , Anemia de Fanconi/genética , Adulto , Infertilidad Femenina/genética , Infertilidad Femenina/etiología , ADN Helicasas
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 580-587, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38948300

RESUMEN

Objective: The main purpose of this study is to compare the embryo development and clinical outcomes of women in different age groups undergoing in vitro fertilization (IVF) processes using gonadotrophin-releasing hormone (GnRH) antagonist protocol, GnRH agonist long protocol, and early follicular phase protocol. We aim to provide reliable reference for future clinical treatments. Methods: We conducted a detailed analysis of patients who underwent treatment between January 2021 and February 2023. 1) In the overall patient population, we comprehensively compared the basic characteristics, the embryo development, and the clinical outcomes of patients treated with three different ovarian stimulation protocols, including the GnRH antagonist protocol group (n=4173), the agonist long protocol group (n=2410), and the early follicular phase long protocol group (n=341). 2) We divided the overall population into three age groups, one group for patients under 30 years old (n=2576), one for patients aged 30-35 (n=3249), and one for patients older than 35 years old (n=1099). Then, we compared the three stimulation protocols based on the group division. We separately compared the embryo development and clinical outcomes of patients using the three stimulation protocols in the under 30 years old, the 30-35 years old, and the over 35 years old age groups. With this analysis, we aimed to explore the response of different age groups to different stimulation protocols and their impact on the success rate of IVF. Results: 1) In the overall population, we found that the average number of oocytes retrieved in the GnRH agonist long protocol group was significantly higher than that in the GnRH antagonist protocol group ([13.85±7.162] vs. [13.36±7.862], P=0.0224), as well as the early follicular phase long protocol group ([13.85±7.162] vs. [11.86±6.802], P<0.0001). Patients in the GnRH antagonist protocol group not only had a significantly lower starting dose of gonadotrophin (Gn) compared to the other two groups (P<0.05) but also had a significantly lower number of days of Gn use (P<0.05). The blastocyst formation rate in the GnRH antagonist protocol group was the highest among the three groups, significantly higher compared to the GnRH agonist long protocol group (64.91% vs. 62.35%, P<0.0001) and the early follicular phase long protocol group (64.91% vs. 61.18%, P=0.0001). However, there were no significant differences in the clinical pregnancy rates or the live birth rates among the three groups treated with different ovarian stimulation protocols (P>0.05). 2) In the <30 age group, the blastocyst formation rate in the GnRH antagonist protocol group was the highest among the three groups, significantly higher compared to the GnRH agonist long protocol group (66.12% vs. 63.33%, P<0.0001) and the early follicular phase long protocol group (66.12% vs. 62.13%, P=0.0094). In the 30-35 age group, the blastocyst formation rate in the GnRH antagonist protocol group was the highest among the three groups, significantly higher compared to the GnRH agonist long protocol group (64.88% vs. 62.93%, P=0.000 9) and the early follicular phase long protocol group (64.88% vs. 60.39%, P=0.0011). In the >35 age group, the blastocyst formation rate in the GnRH antagonist protocol group was significantly higher than that in the GnRH agonist long protocol group (59.83% vs. 56.51%, P=0.0093), while there was no significant difference compared to that of the early follicular phase long protocol group (P>0.05). In the three age groups, we found that there were no significant differences in clinical pregnancy rate, live birth rate, and neonatal outcome indicators (fetal weight and Apgar score) among the three stimulation protocols (antagonist protocol, GnRH agonist long protocol, and early follicular phase long protocol) (P>0.05). The findings showed no significant differences between clinical and neonatal outcomes in patients of all ages, regardless of the ovarian stimulation protocol, suggesting that the three ovarian stimulation protocols have similar therapeutic effects in patients of different ages. The results of this study have important implications for the selection of an appropriate ovarian stimulation protocol and the prediction of treatment outcomes. Conclusion: In the younger than 30 and 30-35 age groups, the GnRH antagonist protocol showed a more significant advantage over the GnRH agonist long protocol and the early follicular phase long protocol. This suggests that for younger and middle-aged patients, the antagonist protocol may lead to better outcomes during ovarian stimulation. In the older than 35 age group, while the antagonist protocol still outperformed the GnRH agonist long protocol, there was no significant difference compared to the early follicular phase long protocol. This may imply that with increasing age, the early follicular phase long protocol may have effects similar to the antagonist protocol to some extent. The advantages of the antagonist protocol lie in its ability to reduce stimulation duration and the dosage of GnRH, while enhancing patient compliance with treatment. This means that patients may find it easier to accept and adhere to this treatment protocol, thereby improving treatment success rates. Particularly for older patients, the use of the antagonist protocol may significantly increase the blastocyst formation rate, which is crucial for improving the success rates. Although there were no significant differences in the clinical outcomes of patients treated with the three protocols in each age group, further research is still needed to validate these findings. Future multicenter studies and increased sample sizes may help comprehensively assess the efficacy of different stimulation protocols. Additionally, prospective studies are needed to further validate these findings and determine the optimal treatment strategies.


Asunto(s)
Desarrollo Embrionario , Fertilización In Vitro , Hormona Liberadora de Gonadotropina , Inducción de la Ovulación , Índice de Embarazo , Humanos , Inducción de la Ovulación/métodos , Femenino , Hormona Liberadora de Gonadotropina/antagonistas & inhibidores , Hormona Liberadora de Gonadotropina/agonistas , Adulto , Fertilización In Vitro/métodos , Embarazo , Desarrollo Embrionario/efectos de los fármacos , Factores de Edad , Fase Folicular/fisiología
4.
ACS Appl Mater Interfaces ; 16(24): 31171-31180, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38845350

RESUMEN

SnS-based carbon composites have garnered considerable concentration as prospective anode materials (AMs) for lithium-ion batteries (LIBs). Nevertheless, most SnS-based carbon composites underwent a two-phase or multistep preparation process and exhibited unsatisfactory LIB performance. In this investigation, we introduce a straightforward and efficient one-step arc-discharge technique for the production of dual-layer carbon-coated tin sulfide nanoparticles (SnS@C). The as-prepared composite is used as an AM for LIBs and delivers a high capacity of 1000.4 mAh g-1 at 1.0 A g-1 after 520 cycles. The SnS@C still maintains a capacity of 476 mAh g-1 after 390 cycles despite a higher current of 5.0 A g-1. The high specific capacity and long life are mainly attributed to a unique dual-carbon layers coating structure. The dual-carbon layers not only could effectively improve electrical conductivity and reduce charge-transfer resistance but also limit the alteration in bulk and self-aggregation of SnS nanoparticles. The SnS@C produced by the arc-discharge technique emerges as a promising applicant for AM in LIBs, and the arc-discharge technique provides an alternative way for synthesizing other transition metal sulfides supported on carbonaceous materials.

5.
Cogn Neurodyn ; 18(3): 847-862, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826665

RESUMEN

EEG neurofeedback using frontal alpha asymmetry (FAA) has been widely used for emotion regulation, but its effectiveness is controversial. Studies indicated that individual differences in neurofeedback training can be traced to neuroanatomical and neurofunctional features. However, they only focused on regional brain structure or function and overlooked possible neural correlates of the brain network. Besides, no neuroimaging predictors for FAA neurofeedback protocol have been reported so far. We designed a single-blind pseudo-controlled FAA neurofeedback experiment and collected multimodal neuroimaging data from healthy participants before training. We assessed the learning performance for evoked EEG modulations during training (L1) and at rest (L2), and investigated performance-related predictors based on a combined analysis of multimodal brain networks and graph-theoretical features. The main findings of this study are described below. First, both real and sham groups could increase their FAA during training, but only the real group showed a significant increase in FAA at rest. Second, the predictors during training blocks and at rests were different: L1 was correlated with the graph-theoretical metrics (clustering coefficient and local efficiency) of the right hemispheric gray matter and functional networks, while L2 was correlated with the graph-theoretical metrics (local and global efficiency) of the whole-brain and left the hemispheric functional network. Therefore, the individual differences in FAA neurofeedback learning could be explained by individual variations in structural/functional architecture, and the correlated graph-theoretical metrics of learning performance indices showed different laterality of hemispheric networks. These results provided insight into the neural correlates of inter-individual differences in neurofeedback learning. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-09939-x.

6.
Int Immunopharmacol ; 137: 112448, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38870883

RESUMEN

Abnormal macrophage polarization is one of the common pathological bases of various inflammatory diseases. The current research focus involves targeting macrophages to remodel their phenotype as a treatment approach for inflammatory diseases. Notably, exosomes can be delivered to specific types of cells or tissues or inflammatory area to realize targeted drug delivery. Although icariin (ICA) exhibits regulatory potential in macrophage polarization, the practical application of ICA is impeded by its water insolubility, poor permeability, and low bioavailability. Exploiting the inherent advantages of exosomes as natural drug carriers, we introduce a novel drug delivery system-adipose-derived stem cells-exosomes (ADSCs-EXO)-ICA. High-performance liquid chromatography analysis confirmed a loading rate of 92.7 ± 0.01 % for ADSCs-EXO-ICA, indicating the successful incorporation of ICA. As demonstrated by cell counting kit-8 assays, ADSCs-EXO exerted a significantly higher promotion effect on macrophage proliferation. The subsequent experimental results revealed the superior anti-inflammatory effect of ADSCs-EXO-ICA compared to individual treatments with EXO or ICA in the lipopolysaccharide + interferon-gamma-induced M1 inflammation model. Additionally, results from enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and western blot analyses revealed that ADSCs-EXO-ICA effectively inhibited macrophage polarization toward the M1-type and concurrently promoted polarization toward the M2-type. The underlying mechanism involved the modulation of macrophage polarization through inhibition of the Toll-like receptor 4/myeloid differentiation factor 88/nuclear transcription factor-kappa B signaling pathway, thereby mitigating inflammation. These findings underscore the potential therapeutic value of ADSCs-EXO-ICA as a novel intervention for inflammatory diseases.

7.
Sci Adv ; 10(23): eadn5175, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838138

RESUMEN

Inheritance of epigenetic information is critical for maintaining cell identity. The transfer of parental histone H3-H4 tetramers, the primary carrier of epigenetic modifications on histone proteins, represents a crucial yet poorly understood step in the inheritance of epigenetic information. Here, we show the lagging strand DNA polymerase, Pol δ, interacts directly with H3-H4 and that the interaction between Pol δ and the sliding clamp PCNA regulates parental histone transfer to lagging strands, most likely independent of their roles in DNA synthesis. When combined, mutations at Pol δ and Mcm2 that compromise parental histone transfer result in a greater reduction in nucleosome occupancy at nascent chromatin than mutations in either alone. Last, PCNA contributes to nucleosome positioning on nascent chromatin. On the basis of these results, we suggest that the PCNA-Pol δ complex couples lagging strand DNA synthesis to parental H3-H4 transfer, facilitating epigenetic inheritance.


Asunto(s)
ADN Polimerasa III , Replicación del ADN , Epigénesis Genética , Histonas , Antígeno Nuclear de Célula en Proliferación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Histonas/metabolismo , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética , Nucleosomas/metabolismo , Nucleosomas/genética , ADN/metabolismo , Humanos , Unión Proteica , Mutación , Cromatina/metabolismo , Cromatina/genética
8.
Abdom Radiol (NY) ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829394

RESUMEN

BACKGROUND: Determining whether prompt surgery is required for patient with ingested foreign bodies is clinically important. PURPOSE: To evaluate the potential value of computed tomography (CT) in guiding the selection of surgical treatment for patients with ingested foreign bodies in the lower gastrointestinal tract. METHODS: Between January 2014 and December 2023, we analyzed the data of 58 patients (median age: 65.4 years; range, 31-96 years) with ingested foreign bodies in the lower gastrointestinal tract who underwent CT examinations. Patients were treated either conservatively (35 cases) or surgically (23 cases). The angle between the long axis of the foreign body and the intestinal canal (FB-IC angle) was measured. CT findings and clinical variables were evaluated to identify potential indicators for surgical treatment through univariate and multivariate logistic regression analyses. RESULTS: Univariate analysis revealed the FB-IC angle (P = 0.002), presence of free peritoneal gas (P = 0.002), white blood cell count (P = 0.018), and neutrophil count (P = 0.007) as significant factors associated with surgical treatment. Multivariate analysis demonstrated that the FB-IC angle (odds ratio, 1.033; P = 0.045) and the presence of free peritoneal gas (odds ratio, 41.335; P = 0.002) are independent indicators for surgical management. The FB-IC angle showed an area under the receiver operating characteristic curve of 0.755, with a cutoff value of 51.25 degrees. CONCLUSION: The FB-IC angle and presence of free peritoneal gas serve as potential predictive imaging markers for surgical intervention.

9.
J Am Chem Soc ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38859682

RESUMEN

The selective splitting of hexane isomers without the use of energy-intensive phase-change processes is essential for the low-carbon production of clean fuels and also very challenging. Here, we demonstrate a strategy to achieve a complete splitting of the high-RON dibranched isomer from the monobranched and linear isomers, by using a nonlinear 3D ligand to form pillar-layered MOFs with delicate pore architecture and chemistry. Compared with its isoreticular MOFs with the same ted pillar but different linear 3D or linear 2D in-layer ligands, the new MOF constructed in this work, Cu(bhdc)(ted)0.5 (ZUL-C5), exhibited an interesting "channel switch" effect which creates pore space with reduced window size and channel dimensionality together with unevenly distributed alkyl-rich adsorption sites, contributing to a greatly enhanced ability to discriminate between mono- and dibranched isomers. Evidenced by a series of studies including adsorption equilibrium/kinetics/breakthrough tests, guest-loaded single-crystal/powder XRD measurement, and DFT-D modeling, a thermodynamic-kinetic synergistic mechanism in the separation was proposed, resulting in a record production time for high-purity 2,2-dimethylbutane along with a high yield.

10.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931497

RESUMEN

Depression is a major psychological disorder with a growing impact worldwide. Traditional methods for detecting the risk of depression, predominantly reliant on psychiatric evaluations and self-assessment questionnaires, are often criticized for their inefficiency and lack of objectivity. Advancements in deep learning have paved the way for innovations in depression risk detection methods that fuse multimodal data. This paper introduces a novel framework, the Audio, Video, and Text Fusion-Three Branch Network (AVTF-TBN), designed to amalgamate auditory, visual, and textual cues for a comprehensive analysis of depression risk. Our approach encompasses three dedicated branches-Audio Branch, Video Branch, and Text Branch-each responsible for extracting salient features from the corresponding modality. These features are subsequently fused through a multimodal fusion (MMF) module, yielding a robust feature vector that feeds into a predictive modeling layer. To further our research, we devised an emotion elicitation paradigm based on two distinct tasks-reading and interviewing-implemented to gather a rich, sensor-based depression risk detection dataset. The sensory equipment, such as cameras, captures subtle facial expressions and vocal characteristics essential for our analysis. The research thoroughly investigates the data generated by varying emotional stimuli and evaluates the contribution of different tasks to emotion evocation. During the experiment, the AVTF-TBN model has the best performance when the data from the two tasks are simultaneously used for detection, where the F1 Score is 0.78, Precision is 0.76, and Recall is 0.81. Our experimental results confirm the validity of the paradigm and demonstrate the efficacy of the AVTF-TBN model in detecting depression risk, showcasing the crucial role of sensor-based data in mental health detection.


Asunto(s)
Depresión , Humanos , Depresión/diagnóstico , Grabación en Video , Emociones/fisiología , Aprendizaje Profundo , Expresión Facial , Femenino , Masculino , Adulto , Redes Neurales de la Computación
11.
J Clin Invest ; 134(13)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771655

RESUMEN

Diffuse midline glioma (DMG) H3K27-altered is one of the most malignant childhood cancers. Radiation therapy remains the only effective treatment yet provides a 5-year survival rate of only 1%. Several clinical trials have attempted to enhance radiation antitumor activity using radiosensitizing agents, although none have been successful. Given this, there is a critical need for identifying effective therapeutics to enhance radiation sensitivity for the treatment of DMG. Using high-throughput radiosensitivity screening, we identified bromo- and extraterminal domain (BET) protein inhibitors as potent radiosensitizers in DMG cells. Genetic and pharmacologic inhibition of BET bromodomain activity reduced DMG cell proliferation and enhanced radiation-induced DNA damage by inhibiting DNA repair pathways. RNA-Seq and the CUT&RUN (cleavage under targets and release using nuclease) analysis showed that BET bromodomain inhibitors regulated the expression of DNA repair genes mediated by H3K27 acetylation at enhancers. BET bromodomain inhibitors enhanced DMG radiation response in patient-derived xenografts as well as genetically engineered mouse models. Together, our results highlight BET bromodomain inhibitors as potential radiosensitizer and provide a rationale for developing combination therapy with radiation for the treatment of DMG.


Asunto(s)
Histonas , Tolerancia a Radiación , Humanos , Animales , Ratones , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Histonas/metabolismo , Histonas/genética , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Reparación del ADN/efectos de los fármacos , Glioma/radioterapia , Glioma/patología , Glioma/genética , Glioma/metabolismo , Glioma/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Fármacos Sensibilizantes a Radiaciones/farmacología , Factores de Transcripción/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Daño del ADN , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas que Contienen Bromodominio , Proteínas
12.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38811165

RESUMEN

The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.


Asunto(s)
Ritmo alfa , Sensibilidad de Contraste , Estimulación Transcraneal de Corriente Directa , Humanos , Femenino , Masculino , Adulto , Ritmo alfa/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Sensibilidad de Contraste/fisiología , Adulto Joven , Método Doble Ciego , Electroencefalografía/métodos , Estimulación Luminosa/métodos , Percepción Visual/fisiología , Fatiga Mental/fisiopatología
13.
ACS Nano ; 18(23): 15167-15176, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38808620

RESUMEN

High-entropy alloys (HEAs) have attracted considerable attention, owing to their exceptional characteristics and high configurational entropy. Recent findings demonstrated that incorporating HEAs into sulfur cathodes can alleviate the shuttling effect of lithium polysulfides (LiPSs) and accelerate their redox reactions. Herein, we synthesized nano Pt0.25Cu0.25Fe0.15Co0.15Ni0.2 HEAs on hollow carbons (HCs; denoted as HEA/HC) by a facile pyrolysis strategy. The HEA/HC nanostructures were further integrated into hypha carbon nanobelts (HCNBs). The solid-solution phase formed by the uniform mixture of the five metal elements, i.e., Pt0.25Cu0.25Fe0.15Co0.15Ni0.2 HEAs, gave rise to a strong interaction between neighboring atoms in different metals, resulting in their adsorption energy transformation across a wide, multipeak, and nearly continuous spectrum. Meanwhile, the HEAs exhibited numerous active sites on their surface, which is beneficial to catalyzing the cascade conversion of LiPSs. Combining density functional theory (DFT) calculations with detailed experimental investigations, the prepared HEAs bidirectionally catalyze the cascade reactions of LiPSs and boost their conversion reaction rates. S/HEA@HC/HCNB cathodes achieved a low 0.034% decay rate for 2000 cycles at 1.0 C. Notably, the S/HEA@HC/HCNB cathode delivered a high initial areal capacity of 10.2 mAh cm-2 with a sulfur loading of 9 mg cm-2 at 0.1 C. The assembled pouch cell exhibited a capacity of 1077.9 mAh g-1 at the first discharge at 0.1 C. The capacity declined to 71.3% after 43 cycles at 0.1 C. In this work, we propose to utilize HEAs as catalysts not only to improve the cycling stability of lithium-sulfur batteries, but also to promote HEAs in energy storage applications.

14.
J Hazard Mater ; 473: 134677, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38795484

RESUMEN

The presence of antibiotic resistance genes (ARGs) in soils has received extensive attention regarding its impacts on environmental, animal, and human systems under One Health. However, the health risks of soil ARGs and microbial determinants of soil resistomes remain poorly understood. Here, a nationwide metagenomic investigation of ARGs in cropland and forest soils in China was conducted. The findings indicated that the abundance and richness of high-risk (i.e., mobilizable, pathogen-carriable and clinically relevant) ARGs in cropland soils were 25.7 times and 8.4 times higher, respectively, compared to those identified in forest soils, suggesting the contribution of agricultural practices to the elevated risk level of soil resistomes. The biosynthetic potential of antibacterials best explained the total ARG abundance (Mantel's r = 0.52, p < 0.001) when compared with environmental variables and anthropogenic disturbance. Both microbial producers' self-resistance and antagonistic interactions contributed to the ARG abundance, of which self-resistance ARGs account for 14.1 %- 35.1 % in abundance. With the increased biosynthetic potential of antibacterials, the antagonistic interactions within the microbial community were greatly enhanced, leading to a significant increase in ARG abundance. Overall, these findings advance our understanding of the emergence and dissemination of soil ARGs and provide critical implications for the risk control of soil resistomes.


Asunto(s)
Antibacterianos , Farmacorresistencia Microbiana , Metagenómica , Microbiología del Suelo , Antibacterianos/farmacología , China , Farmacorresistencia Microbiana/genética , Agricultura , Suelo/química , Metagenoma , Genes Bacterianos
15.
Cryobiology ; 115: 104902, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734365

RESUMEN

In this clinical study, we investigated the potential of melatonin (MT) supplementation in the freeze-thaw medium used for cryopreserved human oocytes. In total, 152 patients who underwent in vitro fertilization between January 2020 and December 2022 were included and categorized into different groups as follows: the donor group, comprising 108 patients who donated their oocytes, with 34 patients using a vitrification and warming medium supplemented with MT (D-MT subgroup) and 74 patients using conventional medium without MT (D-0 subgroup); and the autologous group, comprising 38 patients who used their own oocytes, with 19 patients using medium supplemented with MT (A-MT subgroup) and 19 patients using medium without MT (A-0 subgroup). After thawing, the surviving oocytes in the D-MT and A-MT subgroups and D-0 and A-0 subgroups were cultured in a fertilization media with and without 10-9 MMT for 2.5 h, respectively, followed by intracytoplasmic sperm injection insemination, embryo culture, and transfer. The survival, cleavage, high-quality embryo, clinical pregnancy, ongoing pregnancy, and implantation rates were significantly higher in the D-MT subgroup than in the D-0 subgroup (all P < 0.05). Similarly, the survival, fertilization, high-quality embryo, and high-quality blastocyst rates were significantly higher in the A-MT subgroup than in the A-0 subgroup (all P < 0.05). These findings indicate that MT addition during cryopreservation can enhance the development of vitrified-warmed human oocytes and improve clinical outcomes.


Asunto(s)
Criopreservación , Melatonina , Oocitos , Vitrificación , Humanos , Melatonina/farmacología , Criopreservación/métodos , Oocitos/efectos de los fármacos , Vitrificación/efectos de los fármacos , Femenino , Adulto , Embarazo , Índice de Embarazo , Fertilización In Vitro/métodos , Inyecciones de Esperma Intracitoplasmáticas/métodos , Crioprotectores/farmacología , Transferencia de Embrión , Técnicas de Cultivo de Embriones/métodos , Blastocisto/efectos de los fármacos
16.
Cancer Discov ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767413

RESUMEN

High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler CHD2 regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons.

17.
Plant Cell ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723594

RESUMEN

Grain size and weight are crucial yield-related traits in rice (Oryza sativa). Although certain key genes associated with rice grain size and weight have been successfully cloned, the molecular mechanisms underlying grain size and weight regulation remain elusive. Here, we identified a molecular pathway regulating grain size and weight in rice involving the MPS ONE BINDER KINASE ACTIVATOR-LIKE 1A-SERINE/THREONINE-PROTEIN KINASE 38-CYCLIN C (OsMOB1A-OsSTK38-OsCycC) module. OsSTK38 is a nuclear Dbf2-related kinase that positively regulates grain size and weight by coordinating cell proliferation and expansion in the spikelet hull. OsMOB1A interacts with and enhances the autophosphorylation of OsSTK38. Specifically, the critical role of the OsSTK38 S322 site in its kinase activity is highlighted. Furthermore, OsCycC, a component of the Mediator complex, was identified as a substrate of OsSTK38, with enhancement by OsMOB1A. Notably, OsSTK38 phosphorylates the T33 site of OsCycC. The phosphorylation of OsCycC by OsSTK38 influenced its interaction with the transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (OsKNAT7). Genetic analysis confirmed that OsMOB1A, OsSTK38 and OsCycC function in a common pathway to regulate grain size and weight. Taken together, our findings revealed a connection between the Hippo signalling pathway and the Cyclin-Dependent Kinase (CDK) module in eukaryotes. Moreover, they provide insights into the molecular mechanisms linked to yield-related traits and propose innovative breeding strategies for high-yielding varieties.

18.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732957

RESUMEN

Probe-based confocal laser endoscopy (pCLE) has emerged as a powerful tool for disease diagnosis, yet it faces challenges such as the formation of hexagonal patterns in images due to the inherent characteristics of fiber bundles. Recent advancements in deep learning offer promise in image denoising, but the acquisition of clean-noisy image pairs for training networks across all potential scenarios can be prohibitively costly. Few studies have explored training denoising networks on such pairs. Here, we propose an innovative self-supervised denoising method. Our approach integrates noise prediction networks, image quality assessment networks, and denoising networks in a collaborative, jointly trained manner. Compared to prior self-supervised denoising methods, our approach yields superior results on pCLE images and fluorescence microscopy images. In summary, our novel self-supervised denoising technique enhances image quality in pCLE diagnosis by leveraging the synergy of noise prediction, image quality assessment, and denoising networks, surpassing previous methods on both pCLE and fluorescence microscopy images.

19.
CNS Neurosci Ther ; 30(5): e14684, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739217

RESUMEN

AIMS: Limited understanding exists regarding the neurobiological mechanisms underlying non-suicidal self-injury (NSSI) and suicide attempts (SA) in depressed adolescents. The maturation of brain network is crucial during adolescence, yet the abnormal alternations in depressed adolescents with NSSI or NSSI+SA remain poorly understood. METHODS: Resting-state functional magnetic resonance imaging data were collected from 114 depressed adolescents, classified into three groups: clinical control (non-self-harm), NSSI only, and NSSI+SA based on self-harm history. The alternations of resting-state functional connectivity (RSFC) were identified through support vector machine-based classification. RESULTS: Convergent alterations in NSSI and NSSI+SA predominantly centered on the inter-network RSFC between the Limbic network and the three core neurocognitive networks (SalVAttn, Control, and Default networks). Divergent alterations in the NSSI+SA group primarily focused on the Visual, Limbic, and Subcortical networks. Additionally, the severity of depressive symptoms only showed a significant correlation with altered RSFCs between Limbic and DorsAttn or Visual networks, strengthening the fact that increased depression severity alone does not fully explain observed FC alternations in the NSSI+SA group. CONCLUSION: Convergent alterations suggest a shared neurobiological mechanism along the self-destructiveness continuum. Divergent alterations may indicate biomarkers differentiating risk for SA, informing neurobiologically guided interventions.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Conducta Autodestructiva , Intento de Suicidio , Humanos , Conducta Autodestructiva/psicología , Adolescente , Masculino , Femenino , Intento de Suicidio/psicología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Depresión/psicología , Depresión/fisiopatología , Depresión/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Niño
20.
Mol Breed ; 44(5): 34, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725797

RESUMEN

Members of the permease gene family are responsible for important biological functions in the growth and development of rice. Here, we show that OsAAP8 is a constitutive expression gene, and its translated protein is localized on the cell membrane. Mutation of the OsAAP8 can promote the expression of genes related to protein and amylopectin synthesis, and also promote the enlargement of protein bodies in its endosperm, leading to an increase in the protein, amylopectin, and total amino acid content of grains in OsAAP8 mutants. Seeds produced by the OsAAP8 mutant were larger, and the chalkiness traits of the OsAAP8 mutants were significantly reduced, thereby improving the nutritional quality and appearance of rice grains. The OsAAP8 protein is involved in the transport of various amino acids; OsAAP8 mutation significantly enhanced the root absorption of a range of amino acids and might affect the distribution of various amino acids. Therefore, OsAAP8 is an important quality trait gene with multiple biological functions, which provides important clues for the molecular design of breeding strategies for developing new high-quality varieties of rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01473-w.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA