Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Lett ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348475

RESUMEN

Herein, we report a visible light-induced difluoromethylation cyclization and subsequent amination-defluorination reaction. This protocol allows efficient to valuable 3-fluoro-quinolinones in moderate to excellent yields. A sequential difluoromethylation-cyclization-amination-defluorination mechanism was proposed based on a mechanism study. Further density functional theory (DFT) calculations revealed that the base K2HPO4 could lower the energy due to the C═O···K+ electrostatic interaction to assist the elimination process, while the six-membered transition state located in situ was essential for the cleavage of N-H and C-F bonds during this SN2'-type process.

2.
Vaccines (Basel) ; 12(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39203953

RESUMEN

Background: Protein-based pneumococcal vaccines (PBPVs) may offer expanded protection against Streptococcus pneumoniae and tackle the antimicrobial resistance crisis in pneumococcal infections. This study examined the safety and immunogenicity in healthy adults vaccinated with three doses of a protein-based pneumococcal vaccine containing pneumococcal surface protein A (PspA) (PRX1, P3296 and P5668) and in combination with a recombinant detoxified pneumolysin protein (PlyLD). Methods: This phase Ia randomized, double blind, placebo-controlled clinical study enrolled healthy adults aged 18-49 years. The participants were randomized into experimental (low-dose, medium-dose, high-dose) and placebo groups in a ratio of 3:1. Three doses of investigational vaccine were given to the participants with an interval of two months. Safety endpoints included the occurrence of total adverse reactions, solicited local and systemic adverse reactions, unsolicited adverse reactions, serious adverse events (SAEs), and several laboratory parameters. Immunogenicity endpoints included geometric mean titers (GMT) of anti-PspA (PRX1, P3296 and P5668) and anti-PlyLD antibodies level as determined by ELISA, seropositivity rates of PspA and PlyLD antibodies (>4-fold increase) and neutralization activity of anti-Ply antibody in serum. Results: A total of 118 participants completed the study of three doses. The candidate PBPV was safe and well-tolerated in all experimental groups. No vaccine-related SAEs were observed in this study. Most solicited adverse reactions were mild and transient. The most frequently reported solicited adverse reactions in the medium- and high-dose groups was pain at the injection site, while in the low-dose group it was elevated blood pressure. The immunogenicity data showed a sharp increase in the GMT level of anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies in serum. The results also showed that the elicited antibodies were dosage-dependent. The high-dose group showed a higher immune response against PspA-RX1, PspA-3296, PspA-5668, and PlyLD antigens. However, repeat vaccination did not increase the level of anti-PspA antibodies but the level of anti-PlyLD antibody. High seropositivity rates were also observed for anti-PspA-RX1, anti-PspA-3296, anti-PspA-5668, and anti-PlyLD antibodies. In addition, a significant difference in the GMT levels of anti-Ply antibody between the high-, medium-, and low-dose groups post each vaccination were indicated by neutralization activity tests. Conclusions: The PBPV showed a safe and immunogenic profile in this clinical trial. Taking into consideration both safety and immunogenicity data, we propose a single dose of 50 µg (medium dose) of PBPV as the optimum approach in providing expanded protection against Streptococcus pneumoniae.

3.
Front Cell Infect Microbiol ; 14: 1358801, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895732

RESUMEN

Background: Rapid and accurate diagnosis of the causative agents is essential for clinical management of bloodstream infections (BSIs) that might induce sepsis/septic shock. A considerable number of suspected sepsis patients initially enter the health-care system through an emergency department (ED), hence it is vital to establish an early strategy to recognize sepsis and initiate prompt care in ED. This study aimed to evaluate the diagnostic performance and clinical value of droplet digital PCR (ddPCR) assay in suspected sepsis patients in the ED. Methods: This was a prospective single-centered observational study including patients admitted to the ED from 25 October 2022 to 3 June 2023 with suspected BSIs screened by Modified Shapiro Score (MSS) score. The comparison between ddPCR and blood culture (BC) was performed to evaluate the diagnostic performance of ddPCR for BSIs. Meanwhile, correlative analysis between ddPCR and the inflammatory and prognostic-related biomarkers were conducted to explore the relevance. Further, the health economic evaluation of the ddPCR was analyzed. Results: 258 samples from 228 patients, with BC and ddPCR performed simultaneously, were included in this study. We found that ddPCR results were positive in 48.13% (103 of 214) of episodes, with identification of 132 pathogens. In contrast, BC only detected 18 positives, 88.89% of which were identified by ddPCR. When considering culture-proven BSIs, ddPCR shows an overall sensitivity of 88.89% and specificity of 55.61%, the optimal diagnostic power for quantifying BSI through ddPCR is achieved with a copy cutoff of 155.5. We further found that ddPCR exhibited a high accuracy especially in liver abscess patients. Among all the identified virus by ddPCR, EBV has a substantially higher positive rate with a link to immunosuppression. Moreover, the copies of pathogens in ddPCR were positively correlated with various markers of inflammation, coagulation, immunity as well as prognosis. With high sensitivity and specificity, ddPCR facilitates precision antimicrobial stewardship and reduces health care costs. Conclusions: The multiplexed ddPCR delivers precise and quantitative load data on the causal pathogen, offers the ability to monitor the patient's condition and may serve as early warning of sepsis in time-urgent clinical situations as ED. Importance: Early detection and effective administration of antibiotics are essential to improve clinical outcomes for those with life-threatening infection in the emergency department. ddPCR, an emerging tool for rapid and sensitive pathogen identification used as a precise bedside test, has developed to address the current challenges of BSI diagnosis and precise treatment. It characterizes sensitivity, specificity, reproducibility, and absolute quantifications without a standard curve. ddPCR can detect causative pathogens and related resistance genes in patients with suspected BSIs within a span of three hours. In addition, it can identify polymicrobial BSIs and dynamically monitor changes in pathogenic microorganisms in the blood and can be used to evaluate antibiotic efficacy and survival prognosis. Moreover, the copies of pathogens in ddPCR were positively correlated with various markers of inflammation, coagulation, immunity. With high sensitivity and specificity, ddPCR facilitates precision antimicrobial stewardship and reduces health care costs.


Asunto(s)
Diagnóstico Precoz , Servicio de Urgencia en Hospital , Reacción en Cadena de la Polimerasa , Sepsis , Humanos , Estudios Prospectivos , Sepsis/diagnóstico , Sepsis/microbiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad , Biomarcadores/sangre , Cultivo de Sangre/métodos , Adulto
5.
Vaccine ; 42(11): 2858-2866, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38519344

RESUMEN

BACKGROUND: Despite some progress in pneumococcal immunization, the global burden of pneumococcal infection remains high, and pneumococcal disease remains a public health concern. Studies in China and abroad have found that 23-valent pneumococcal polysaccharide vaccine (PPV23) vaccination can effectively prevent invasive pneumococcal disease. This phase Ⅰ clinical study assessed the safety and immunogenicity of a PPV23 vaccine candidate. METHODS: All subjects were randomly assigned to receive one dose intramuscular injection of experimental vaccine or control vaccine at a ratio of 1:1. The incidence of any adverse events was observed within 30 min, 0-7 days and 8-28 days post vaccination and the incidence of abnormal blood biochemical and blood routine indicators were tested on the 4th day post vaccination, the incidence of serious adverse events (SAEs) at 6 months post vaccination was recorded. Blood samples were collected prior to vaccination and on the 28th day post vaccination, and serum antibodies were detected by enzyme linked immunosorbent assay (ELISA). RESULTS: The most common adverse reaction was pain at the injection site, followed by erythema. There was no significant difference of the incidence of systemic adverse reactions between the two vaccine groups. The adverse reactions observed in the trial were all common vaccination-related reactions, and no serious adverse reactions were observed. Compared to pre-vaccination, the (geometric mean concentrations) GMCs of IgG (immunoglobulin G) specific antibody against each serotype were all increased in the experimental group and the control group, there were statistical differences in seroconversion rates of serotypes 4 and 20 between the two vaccine groups. CONCLUSION: This clinical study showed good safety of the PPV23 vaccine candidate produced by Ab&b Biotechnology Co., Ltd.JS had good safety after vaccination in people aged 2 years and older. At the same time, good immunogenicity was also demonstrated.


Asunto(s)
Anticuerpos Antibacterianos , Infecciones Neumocócicas , Humanos , Vacunas Neumococicas , Infecciones Neumocócicas/prevención & control , Vacunación , Inmunoglobulina G , Inmunogenicidad Vacunal , Vacunas Conjugadas
6.
Adv Sci (Weinh) ; 11(22): e2400018, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38502873

RESUMEN

Mix-dimensional heterojunctions (MDHJs) photodetectors (PDs) built from bulk and 2D materials are the research focus to develop hetero-integrated and multifunctional optoelectronic sensor systems. However, it is still an open issue for achieving multiple effects synergistic characteristics to boost sensitivity and enrich the prospect in artificial bionic systems. Herein, electrically tunable Te/WSe2 MDHJs phototransistors are constructed, and an ultralow dark current below 0.1 pA and a large on/off rectification ratio of 106 is achieved. Photoconductive, photovoltaic, and photo-thermoelectric conversions are simultaneously demonstrated by tuning the gate and bias. By these synergistic effects, responsivity and detectivity respectively reach 13.9 A W-1 and 1.37 × 1012 Jones with 400 times increment. The Te/WSe2 MDHJs PDs can function as artificial bionic visual systems due to the comparable response time to those of the human visual system and the presence of transient positive and negative response signals. This work offers an available strategy for intelligent optoelectronic devices with hetero-integration and multifunctions.

7.
Comput Biol Med ; 166: 107479, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37783074

RESUMEN

OBJECTIVE: Chronic heart failure (CHF) is a complicated clinical syndrome with a high mortality rate. XiJiaQi (XJQ) is a traditional Chinese medicine used in the clinical treatment of CHF, but its bioactive components and their modes of action remain unknown. This study was designed to unravel the molecular mechanism of XJQ in the treatment of CHF using multiple computer-assisted and experimental methods. METHODS: Pharmacoinformatics-based methods were used to explore the active components and targets of XJQ in the treatment of CHF. ADMETlab was then utilized to evaluate the pharmacokinetic and toxicological properties of core components. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were to explore the underlying mechanism of XJQ treatment. Molecular docking, surface plasmon resonance (SPR), and molecular dynamics (MD) were employed to evaluate the binding of active components to putative targets. RESULTS: Astragaloside IV, formononetin, kirenol, darutoside, periplocin and periplocymarin were identified as core XJQ-related components, and IL6 and STAT3 were identified as core XJQ targets. ADME/T results indicated that periplocin and periplocymarin may have potential toxicity. GO and KEGG pathway analyses revealed that XJQ mainly intervenes in inflammation, apoptosis, diabetes, and atherosclerosis-related biological pathways. Molecular docking and SPR revealed that formononetin had a high affinity with IL6 and STAT3. Furthermore, MD simulation confirmed that formononetin could firmly bind to the site 2 region of IL6 and the DNA binding domain of STAT3. CONCLUSION: This study provides a mechanistic rationale for the clinical application of XJQ. Modulation of STAT3 and IL-6 by XJQ can impact CHF, further guiding research efforts into the molecular underpinnings of CHF.

8.
Plant Cell Environ ; 46(12): 3760-3774, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37642386

RESUMEN

Wheat (Triticum aestivum L.) is an important food crop mainly grown in arid and semiarid regions worldwide, whose productivity is severely limited by drought stress. Although various E3 ubiquitin (Ub) ligases regulate drought stress, only a few SINA-type E3 Ub ligases are known to participate in such responses. Herein, we identified and cloned 15 TaSINAs from wheat. The transcription level of TaSINA2B was highly induced by drought, osmotic and abscisic acid treatments. Two-type promoters of TaSINA2B were found in 192 wheat accessions; furthermore wheat accessions with promoter TaSINA2BII showed a considerably higher level of drought tolerance and gene expression levels than those characterizing accessions with promoter TaSINA2BI that was mainly caused by a 64 bp insertion in its promoter. Enhanced drought tolerance of TaSINA2B-overexpressing (OE) transgenic wheat lines was found to be associated with root growth promotion. Further, an interaction between TaSINA2B and TaSINA1D was detected through yeast two-hybrid and bimolecular fluorescence complementation assays. And TaSINA1D-OE transgenic wheat lines showed similar drought tolerance and root growth phenotype to those observed when TaSINA2B was overexpressed. Therefore, the variation of TaSINA2B promoter contributed to the drought stress regulation, while TaSINA2B, interacting with TaSINA1D, positively regulated drought tolerance by promoting root growth.


Asunto(s)
Resistencia a la Sequía , Triticum , Triticum/fisiología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Sequías , Ligasas/genética , Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Molecules ; 28(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049899

RESUMEN

A general visible light-induced sulfonylation/cyclization to produce quinoline-2,4-diones was achieved under photocatalyst-free conditions. The reactions were performed at room temperature, and various substituents (halogen, alkyl, aryl) and substituted products were obtained with 29 examples within 2 h. Large-scale synthesis and derivatization study via carbonyl reduction to produce easily modified hydroxyl groups and convenient N-Ts deprotection showed the potential utility of this strategy.

10.
EBioMedicine ; 90: 104507, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36893588

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease affecting multiple organs and tissues with high cellular heterogeneity. CD8+ T cell activity is involved in the SLE pathogenesis. However, the cellular heterogeneity and the underlying mechanisms of CD8+ T cells in SLE remain to be identified. METHODS: Single-cell RNA sequencing (scRNA-seq) of PBMCs from a SLE family pedigree (including 3 HCs and 2 SLE patients) was performed to identify the SLE-associated CD8+ T cell subsets. Flow cytometry analysis of a SLE cohort (including 23 HCs and 33 SLE patients), qPCR analysis of another SLE cohort (including 30 HCs and 25 SLE patients) and public scRNA-seq datasets of autoimmune diseases were employed to validate the finding. Whole-exome sequencing (WES) of this SLE family pedigree was used to investigate the genetic basis in dysregulation of CD8+ T cell subsets identified in this study. Co-culture experiments were performed to analyze the activity of CD8+ T cells. FINDINGS: We elucidated the cellular heterogeneity of SLE and identified a new highly cytotoxic CD8+ T cell subset, CD161-CD8+ TEMRA cell subpopulation, which was remarkably increased in SLE patients. Meanwhile, we discovered a close correlation between mutation of DTHD1 and the abnormal accumulation of CD161-CD8+ TEMRA cells in SLE. DTHD1 interacted with MYD88 to suppress its activity in T cells and DTHD1 mutation promoted MYD88-dependent pathway and subsequently increased the proliferation and cytotoxicity of CD161-CD8+ TEMRA cells. Furthermore, the differentially expressed genes in CD161-CD8+ TEMRA cells displayed a strong out-of-sample prediction for case-control status of SLE. INTERPRETATION: This study identified DTHD1-associated expansion of CD161-CD8+ TEMRA cell subpopulation is critical for SLE. Our study highlights genetic association and cellular heterogeneity of SLE pathogenesis and provides a mechanistical insight into the diagnosis and treatment of SLE. FUNDINGS: Stated in the Acknowledgements section of the manuscript.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Humanos , Linfocitos T CD8-positivos , Factor 88 de Diferenciación Mieloide/metabolismo , Subgrupos de Linfocitos T , Linfocitos T Citotóxicos/metabolismo , Lupus Eritematoso Sistémico/genética , Enfermedades Autoinmunes/metabolismo
11.
Nano Lett ; 23(6): 2114-2120, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36867589

RESUMEN

Electronic properties of two-dimensional (2D) materials can be significantly tuned by an external electric field. Ferroelectric gates can provide a strong polarization electric field. Here, we report the measurements of the band structure of few-layer MoS2 modulated by a ferroelectric P(VDF-TrFE) gate with contact-mode scanning tunneling spectroscopy. When P(VDF-TrFE) is fully polarized, an electric field up to ∼0.62 V/nm through the MoS2 layers is inferred from the measured band edges, which affects the band structure significantly. First, strong band bending in the vertical direction signifies the Franz-Keldysh effect and a large extension of the optical absorption edge. Photons with energy of half the band gap are still absorbed with 20% of the absorption probability of photons at the band gap. Second, the electric field greatly enlarges the energy separations between the quantum-well subbands. Our study intuitively demonstrates the great potential of ferroelectric gates in band structure manipulation of 2D materials.

12.
Front Immunol ; 14: 1095457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923408

RESUMEN

Introduction: Circular RNAs (circRNAs) have been linked to regulate macrophage polarization and subsequent inflammation in sepsis. However, the underlying mechanism and the function of circRNAs in macrophage pyroptosis in pneumonia-induced sepsis are still unknown. Methods: In this study, we screened the differentially expressed circRNAs among the healthy individuals, pneumonia patients without sepsis and pneumonia-induced sepsis patients in the plasma by RNA sequencing (RNA-seq). Then we evaluated macrophage pyroptosis in sepsis patients and in vitro LPS/nigericin activated THP-1 cells. The lentiviral recombinant vector for circ_0075723 overexpression (OE-circ_0075723) and circ_0075723 silence (sh-circ_0075723) were constructed and transfected into THP-1 cells to explore the potential mechanism of circ_0075723 involved in LPS/nigericin induced macrophage pyroptosis. Results: We found circ_0075723, a novel circRNA that was significantly downregulated in pneumonia-induced sepsis patients compared to pneumonia patients without sepsis and healthy individuals. Meanwhile, pneumonia-induced sepsis patients exhibited activation of NLRP3 inflammasome and production of the pyroptosis-associated pro-inflammatory cytokines IL-1ß and IL-18. circ_0075723 inhibited macrophage pyroptosis via sponging miR-155-5p which promoted SHIP1 expression directly. Besides, we found that circ_0075723 in macrophages promoted VE-cadherin expression in endothelial cells through inhibiting the release of NLRP3 inflammasome-related cytokines, IL-1ß and IL-18, and protects endothelial cell integrity. Discussion: Our findings propose a unique approach wherein circ_0075723 suppresses macrophage pyroptosis and inflammation in pneumonia-induced sepsis via sponging with miR-155-5p and promoting SHIP1 expression. These findings indicate that circRNAs could be used as possible potential diagnostic and therapeutic targets for pneumonia-induced sepsis.


Asunto(s)
MicroARNs , Neumonía , Sepsis , Humanos , Citocinas , Células Endoteliales , Inflamasomas/genética , Inflamación , Interleucina-18 , Lipopolisacáridos , MicroARNs/genética , Nigericina , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis/genética , ARN Circular/genética , Sepsis/genética
13.
Drug Deliv Transl Res ; 13(4): 1012-1021, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36575353

RESUMEN

Rasagiline has a certain potential in neuroprotection and delaying the progression of Parkinson's disease (PD). However, the poor pharmacokinetics (PK) characteristics of conventional oral tablets and poor medication compliance limit the optimal efficacy of rasagiline. Based on this, we designed and optimized a sustained-release rasagiline in situ gel based on in vitro release and in vivo PK results. Among them, we found for the first time that aluminum hydroxide can effectively shorten the lag phase and promote early and late release, making the daily release more uniform. After subcutaneous administration of the optimized gel formulation at a monthly dose, the Cmax (64 ng/ml) was lower than that of free rasagiline (494 ng/ml) administered subcutaneously at a daily dose and comparable to that of oral administration of Azilect® (59.1 ng/ml) at a daily dose. In the meantime, the plasma concentration of rasagiline was mainly maintained at 5-10 ng/ml for about 1 month, and the active metabolite 1-aminoindane in plasma was also able to maintain a steady state. The rasagiline in situ gel has suitable viscosity and injectability, good repeatability of subcutaneous injection, and controllable impurities and can achieve sustained release in vivo with small burst release, which may have the clinical application advantages of maximizing the disease-modifying effect of rasagiline and improving medication compliance. The rasagiline in situ gel was optimized through the feedback of in vitro release and in vivo pharmacokinetics (PK), in which the addition of aluminum hydroxide had a modulating effect on uniform release. The gel has low burst release and maintains steady-state blood drug concentration for about 1 month.


Asunto(s)
Hidróxido de Aluminio , Enfermedad de Parkinson , Humanos , Hidróxido de Aluminio/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Indanos , Inyecciones Subcutáneas
14.
Nanoscale ; 14(34): 12409-12417, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35971990

RESUMEN

Developing flexible sensors with high sensitivity, a wide sensing range, and good stability is a challenge. By replicating the anodic aluminum oxide (AAO) hole structure, we proposed new strain sensors with Pt nano-mesh films embedded in polydimethylsiloxane (PDMS) films. The nano-mesh strain sensor exhibited high sensitivity (a gauge factor of 4500) and a sensing range as high as 90%. The resistance remained almost completely unchanged after 1500 loading/unloading cycles of 15% strain, demonstrating the high repeatability and stability of the sensor. In addition, even if the nano-mesh experienced an open circuit by overstraining, the sensor can still measure strain within 45% after recovery. The capability of spontaneous functional recovery after fractural damage considerably extends its service life. Finally, the nano-mesh strain sensors were worn on the wrist and neck to monitor wrist movement and throat vibration, respectively. Signals corresponding to swallowing, throat clearing, and letter pronunciation were clearly distinguished from the peak value and signal patterns. These results indicate that the metal nano-mesh strain sensors have great potential for applications in wearable devices, electronic skin, and flexible robotics.

15.
Chem Commun (Camb) ; 58(69): 9658-9661, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35943410

RESUMEN

Herein, we describe a novel O2N˙-triggered ordered addition 7-endo cyclization reaction with excellent chemo- and regioselectivity. With such a strategy, structurally diverse nitro-benzo[b]azepines were prepared with 28 examples. Large-scale operation and handy N-Ts and N-Cbz deprotection reveal the promising utility of this methodology. Mechanistic studies suggest that the reaction proceeds through a radical pathway.


Asunto(s)
Azepinas , Polienos , Ciclización
16.
Sci Total Environ ; 844: 157202, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35810898

RESUMEN

A renewable tri-metallic spinel decorated biochar adsorbent (MZF-BC) was fabricated by a facile hydrothermal method and to remove tetracycline. The physicochemical properties of MZF-BC were well studied. MZF-BC with a hybrid pore structure of mesopores (~7.6 nm) and macropores (~50 nm) has the maximum tetracycline adsorption capacity reaching 142.4 mg g-1. Through the study of adsorption kinetics, isotherms and key influencing factors, it was found that MZF-BC adsorption on tetracycline was primarily multi-layer effect with the initial adsorption behavior of pore filling associated with hydrogen bonding and π-π stacking. Furthermore, the MZF-BC performs excellent regeneration ability by driving Fenton-like catalysis as the self-cleaning process in the liquid phase. This study contributes to a new insight into the in-situ regeneration of biochar-based adsorbents after adsorbing organic pollutants in pharmaceutical wastewater treatment.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Antibacterianos , Carbón Orgánico/química , Compuestos Férricos , Cinética , Tetraciclina , Contaminantes Químicos del Agua/análisis
17.
Front Immunol ; 13: 898151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812412

RESUMEN

Safe and effective vaccines against SARS-CoV-2 for children are urgently needed. Here we aimed to assess the safety and immunogenicity of an inactivated COVID-19 vaccine candidate, WIBP-CorV, in participants aged 3-17 years. A randomized, double-blind, placebo-controlled, phase 1/2 clinical trial was conducted in Henan Province, China, in healthy children aged 3-17 years. 240 participants in phase 1 trial and 576 participants in phase 2 trial were randomly assigned to vaccine or control with an age de-escalation in three cohorts (3-5, 6-12 and 13-17 years) and dose-escalation in three groups (2.5, 5.0 and 10.0µg/dose), and received 3 intramuscular injections at day 0, 28, and 56. WIBP-CorV showed a promising safety profile with approximately 17% adverse reactions within 30 days after injection and no grade 3 or worse adverse events. The most common adverse reaction was injection site pain, followed by fever, which were mild and self-limiting. The geometric mean titers of neutralizing antibody ranged from 102.2 to 1065.5 in vaccinated participants at 28 days after the third vaccination, and maintained at a range of 14.3 to 218.2 at day 180 after the third vaccination. WIBP-CorV elicited significantly higher titers of neutralizing antibody in the cohort aged 3-5 years than the other two cohorts. There were no detectable antibody responses in all alum-only groups. Taken together, our data demonstrate that WIBP-CorV is safe and well tolerated at all tested doses in participants aged 3-17 years, and elicited robust humoral responses against SARS-CoV-2 lasted for at least 6 months after the third vaccination. This study is ongoing and is registered with www.chictr.org.cn, ChiCTR2000031809.


Asunto(s)
COVID-19 , Vacunas , Anticuerpos Neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Niño , Método Doble Ciego , Humanos , SARS-CoV-2
18.
Front Plant Sci ; 13: 945272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860542

RESUMEN

The development and production of bread wheat (Triticum aestivum L.) are widely affected by drought stress worldwide. Many NAC transcription factors (TFs) of stress-associated group (SNAC) are functionally proven to regulate drought tolerance. In this study, we identified 41 TaSNACs that were classified into 14 groups, and the expression of TaSNAC4-3D was induced in the leaf tissue via osmotic or abscisic acid (ABA) treatment. TaSNAC4-3D was localized to the nucleus through the transient expression assay, and the C-terminal region exhibited transcriptional activity via transactivation assays. TaSNAC4-3D was overexpressed in common wheat. The wheat plants with TaSNAC4-3D overexpression was more sensitive to drought stress compared with wild-type (WT) plants. The water loss rate showed no difference between transgenic lines and WT plants. However, drought stress increased H2O2 and O2- accumulation and promoted programmed cell death (PCD) in the leaf tissue of TaSNAC4-3D overexpression lines compared with WT plants. RNA-seq analysis was performed under well-watered and drought conditions, and four strong potential target genes, encoding senescence regulators, were identified by analyzing their promoters containing the NAC recognition sequence (NACRS). Based on these results, our findings revealed that TaSNAC4-3D negatively regulates drought tolerance by inducing oxidative damage in bread wheat.

19.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(4): 357-361, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35692198

RESUMEN

OBJECTIVE: To investigate the effect and mechanism of histone methyltransferase enhancer of zeste homolog 2 (EZH2) on sepsis-induced T cell dysfunction. METHODS: Twenty-four male C57BL/6 mice were divided into three groups randomly: sham operated group, sepsis model group [cecum ligation and puncture (CLP)+dimethyl sulfoxide (DMSO) group] and EZH2 selective inhibitor treated group (CLP+GSK126 group), with 8 mice in each group. Sepsis murine model was reproduced by CLP. CLP+DMSO group and CLP+GSK126 group were treated with DMSO or GSK126 (10 mg/kg) respectively right after surgery through intraperitoneal injection. The mice were sacrificed 24 hours after operation, and the mesenteric lymph nodes were collected. The expression of EZH2, apoptosis rates, cell proliferation marker ki-67 antigen positive T lymphocytes (ki-67+ cell), interferon-γ positive T lymphocytes (IFN-γ + cell), programmed death receptor-1 positive T lymphocytes (PD-1+ cell) and programmed death-ligand 1 positive T lymphocytes (PD-L1+ cell) were determined by flow cytometry. RESULTS: Compared with sham operated group, the expression of EZH2 in T lymphocytes was up-regulated on mesenteric lymph nodes of CLP+DMSO group. Compared with CLP+DMSO group, the ratio of CD3+ T lymphocytes in CLP+GSK126 group was up-regulated (0.70±0.02 vs. 0.50±0.07, P < 0.01), indicating that the EZH2 inhibitor could increase the number of T lymphocytes in lymph nodes of septic mice; the ratio of ki-67+ cells in CD4+ and CD8+ T lymphocytes in CLP+GSK126 group was increased (CD4+: 0.74±0.05 vs. 0.63±0.04, CD8+: 0.82±0.06 vs. 0.70±0.04, both P < 0.05), indicating that the EZH2 inhibitor could increase the ratio of T lymphocytes with high proliferative activity in lymph nodes of septic mice. However, no significant difference was found on both CD4+ and CD8+ T lymphocytes apoptosis rates in the mesenteric lymph nodes of mice between CLP+GSK126 group and CLP+DMSO group [CD4+: (21.53±2.87)% vs. (20.48±3.21)%, CD8+: (8.34±1.02)% vs. (7.71±1.38)%, both P > 0.05], indicating that no extra T lymphocytes apoptosis was induced by EZH2 inhibitor. Compared with CLP+DMSO group, the ratios of IFN-γ + CD4+ and IFN-γ + CD8+ T lymphocytes were increased in CLP+GSK126 group (IFN-γ +CD4+: 0.31±0.11 vs. 0.14±0.06, IFN-γ +CD8+: 0.30±0.10 vs. 0.13±0.06, both P < 0.05), suggesting that secretion of IFN-γ in lymph nodes by sepsis T lymphocytes was augmented after EZH2 inhibitor administration. Furthermore, compared with CLP+DMSO group, the ratio of PD-1+ cell in CD8+ T lymphocyte was down-regulated in CLP+GSK126 group (0.092±0.006 vs. 0.135±0.004, P < 0.01), suggesting that EZH2 inhibitor restrained the PD-1 expression on sepsis lymphoid node CD8+ T lymphocytes, however, it had no significant effect on PD-L1+ cells. CONCLUSIONS: EZH2, regulates sepsis-induced T lymphocyte dysfunction, possibly through modulating the expression of PD-1.


Asunto(s)
Antígeno B7-H1 , Sepsis , Animales , Dimetilsulfóxido/metabolismo , Dimetilsulfóxido/farmacología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/farmacología , Histona Metiltransferasas , Interferón gamma/metabolismo , Interferón gamma/farmacología , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/metabolismo , Sepsis/metabolismo , Linfocitos T/metabolismo
20.
Acta Pharm Sin B ; 12(3): 1487-1499, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530142

RESUMEN

The unique characteristics of the tumor microenvironment (TME) could be exploited to develop antitumor nanomedicine strategies. However, in many cases, the actual therapeutic effect is far from reaching our expectations due to the notable tumor heterogeneity. Given the amplified characteristics of TME regulated by vascular disrupting agents (VDAs), nanomedicines may achieve unexpected improved efficacy. Herein, we fabricate platelet membrane-fusogenic liposomes (PML/DP&PPa), namely "platesomes", which actively load the hypoxia-activated pro-prodrug DMG-PR104A (DP) and physically encapsulate the photosensitizer pyropheophorbide a (PPa). Considering the different stages of tumor vascular collapse and shutdown induced by a VDA combretastatin-A4 phosphate (CA4P), PML/DP&PPa is injected 3 h after intraperitoneal administration of CA4P. First, CA4P-mediated tumor hemorrhage amplifies the enhanced permeation and retention (EPR) effect, and the platesome-biological targeting further promotes the tumor accumulation of PML/DP&PPa. Besides, CA4P-induced vascular occlusion inhibits oxygen supply, followed by photodynamic therapy-caused acute tumor hypoxia. This prolonged extreme hypoxia contributes to the complete activation of DP and then high inhibitory effect on tumor growth and metastasis. Thus, such a combining strategy of artificially-regulated TME and bio-inspired platesomes pronouncedly improves tumor drug delivery and boosts tumor hypoxia-selective activation, and provides a preferable solution to high-efficiency cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA