Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Orthop Surg Res ; 18(1): 663, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674252

RESUMEN

BACKGROUND: The implication of deregulated circular RNAs in osteoporosis (OP) has gradually been proposed. Herein, we aimed to study the function and mechanism of circ_0001825 in OP using osteogenic-induced human-derived mesenchymal stem cells (hMSCs). METHODS: The content of genes and proteins was tested by quantitative real-time polymerase chain reaction and Western blotting. The osteogenic differentiation in hMSCs were evaluated by ALP activity and Alizarin Red staining, as well as the detection of osteogenesis-related markers. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry. The binding between miR-1270 and circ_0001825 or SMAD5 (SMAD Family Member 5) was confirmed by using dual-luciferase reporter assay and pull-down assay. RESULTS: Circ_0001825 was lowly expressed in OP patients and osteogenic induced hMSCs. Knockdown of circ_0001825 suppressed hMSC viability and osteogenic differentiation, while circ_0001825 overexpression showed the exact opposite effects. Mechanistically, circ_0001825/miR-1270/SMAD5 formed a feedback loop. MiR-1270 was increased and SMAD5 was decreased in OP patients and osteogenic induced hMSCs. MiR-1270 up-regulation suppressed hMSC viability and osteogenic differentiation, which was reversed by SMAD5 overexpression. Moreover, miR-1270 deficiency abolished the effects of circ_0001825 knockdown on hMSCs. CONCLUSION: Circ_0001825 promoted hMSC viability and osteogenic differentiation via miR-1270/SMAD5 axis, suggesting the potential involvement of circ_0001825 in osteoporosis.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , Humanos , Osteogénesis/genética , Diferenciación Celular/genética , MicroARNs/genética , Proteína Smad5/genética
2.
Aging (Albany NY) ; 13(5): 6945-6956, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33621956

RESUMEN

Postmenopausal osteoporosis (PMOP) poses a significant threat to women's health worldwide. However, detailed molecular mechanism and therapeutic strategy for PMOP remain insufficient. Accumulating evidence suggests that miR-48-5p is implicated in the pathogenesis of osteoporosis. The present study aimed to determine the role and mechanism of miR-483-5p in PMOP. Results from PMOP patients demonstrated that miR-483-5p was up-regulated and SATB2 was down-regulated. Luciferase reporter assay identified SATB2 as a direct target gene of miR-483-5p. Experiments in MC3T3-E1 cells indicated that miR-483-5p mimic markedly inhibited cell viability as well as the expressions of OPG, RUNX2 and BMP2. And miR-483-5p inhibitor, SATB2-overexpressed lentiviruses (Lv-SATB2) or LY294002 (PI3K/AKT inhibitor) significantly reversed the above results. Similarly, PI3K/AKT signaling was activated by miR-483-5p mimic, and was inhibited in miR-483-5p inhibitor, Lv-SATB2 or LY294002 treated cells. In vivo experiments showed that miR-483-5p inhibitor significantly increased the bone mineral density and biomechanical parameters of femurs in ovariectomized (OVX) rats by targeting SATB2. In addition, the osteogenic differentiation and PI3K/AKT signaling were also regulated by miR-483-5p-SATB2 axis. Taken together, our findings indicated that miR-483-5p contributed to the pathogenesis of PMOP by inhibiting SATB2 and activating PI3K/AKT pathway. MiR-483-5p/SATB2 could be selected as a potential therapeutic target for PMOP.


Asunto(s)
Silenciador del Gen , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , MicroARNs/genética , Osteoporosis Posmenopáusica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , MicroARNs/metabolismo , Osteoporosis Posmenopáusica/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ratas Sprague-Dawley , Transducción de Señal , Factores de Transcripción/genética
3.
RSC Adv ; 9(61): 35429-35442, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35528068

RESUMEN

Liquid chromatography coupled with mass spectrometry has been used as metabolomics profiling tool to discover and identify the metabolites in metabolic diseases. Osteoporosis (OP) syndrome is a chronic metabolic disease characterized by bone mass reduction and changes in bone microstructure. Psoralea corylifolia Linn. seeds (PCS) have a therapeutic effect on osteoporosis, but their action mechanism and therapeutic target are still unclear. This study aims to explore the metabolic changes of the urine profile in glucocorticoid-induced OP model rats and the therapeutic effect of PCS. High-throughput metabolomics based on the liquid chromatography coupled with mass spectrometry quadrupole time-of-flight mass spectrometry and multivariate data analysis were used to analyze the urine metabolites. The results showed that has an obvious separation between model and control groups. OPLS-DA was used to further analyze and discover substances that contributed to the separation. 42 potential biomarkers and 12 related metabolic pathways were identified in combination with network databases. After the intervention of PCS, 24 biomarkers were significantly regulated, mainly with glycone, serine and threonine metabolism, glutathione metabolism and purine metabolism and other metabolic pathways are related and discovered. This study has proved that PCS has therapeutic effect against OP by regulating that metabolic pathways disturbed in the OP. It provided a basis for the research and future development of new drugs for OP treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA