Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
J Hazard Mater ; 478: 135499, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39141939

RESUMEN

Uranium pollution in aquatic ecosystems poses a threat to organisms. However, the metabolism and toxicity of uranium along aquatic food chains remain unknown. Here, we established an artificial aquatic ecosystem to investigate the fate of uranium along the food chain and reveal its potential toxicity. The results displayed a dose- and time-dependent toxicity of uranium on algae, leading to cell deformation and impeding cell proliferation. When uranium-exposed algae are ingested by fish, uranium tends to concentrate in the intestinal system and bones of fish. Comparatively, direct water uranium exposure resulted in a remarkable uranium accumulation in the head, skin, and muscles of fish, suggesting different toxicity depending on distinct exposure pathways. High-level uranium pollution (20 mg L-1) intensifies the toxicity to fish through food intake compared to direct water exposure. It has also revealed that approximately 25 % and 20 % of U(VI) were reduced to lower valence forms during its accumulation in algae and fish, respectively, and over 10 % of U(IV, VI) converted to U(0) ultimately, through which uranium toxicity was mitigated due to the lower solubility and bioavailability. Overall, this study provides new insights into the fate of uranium during its delivery along the aquatic food chain and highlights the risks associated with consuming uranium-contaminated aquatic products.

3.
Environ Pollut ; 360: 124624, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069243

RESUMEN

Initial volatile concentration (Cs0) is a crucial parameter for the migration and diffusion of volatile organic pollutants (VOCs) from the soil to the atmosphere. The acquisition of Cs0 is, however, time-consuming and labor-intensive. This study developed a prediction model for Cs0 based on theoretical analysis and experimental simulations. The model was established by correlating the molecular kinetic and sorption potential energy. The pore structure and pore size distribution of the soil were analyzed based on the fractal theory of porous media, followed by calculating the sorption potential energy corresponding to each pore size. It was observed that the pore size distribution of soil influenced BTEX (benzene, toluene, ethylbenzene, and xylene) volatilization by impacting sorption potential energy. The soil parameters, such as organic matter and soil moisture content, and the initial concentration and physical properties of BTEX were coupled to the prediction model to ensure its practicability. Red soil was finally used to verify the accuracy and applicability of the model. The experimental and predicted values' maximum relative and root-mean-square errors were determined to be 24.2% and 11.7%, respectively. The model provides a simple, rapid, and accurate assessment of soil vapor emission content due to BTEX contamination. This study offers an economical and practical method for quantifying the amount of volatile BTEX in contaminated sites, providing a reference for its monitoring, control, and subsequent remediation.

4.
Environ Sci Pollut Res Int ; 31(28): 41013-41024, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842776

RESUMEN

Severe pollution threatens the ecosystem and human health in the Yangtze River Delta (YRD) in China because of the rapid development of industry in this area. This study examines the types, distribution, concentration, and origin of fourteen typical organophosphate flame retardants (OPFRs) in agricultural soils within the YRD region to offer insights for pollutant control and policy-making. The total concentration of OPFRs (ΣOPFRs) varied between 79.19 and 699.58 µg/kg dry weight (dw), averaging at 209.61 µg/kg dw. Among the OPFRs detected, tributoxyethyl phosphate (TBEP) was identified as the main congener, followed by tri-n-butyl phosphate (TnBP), tris(2-chloroisopropyl) phosphate (TCPP), and trimethyl phosphate (TMP). Source analysis, conducted through correlation coefficients and PCA, indicated that OPFRs in agricultural soils within the YRD region mainly originate from emissions related to plastic products and transportation. The health risk exposure to ΣOPFRs in agricultural soil was considered negligible for farmers, with values below 1.24 × 10-2 and 1.76 × 10-9 for noncarcinogenic and carcinogenic risks, respectively. However, the ecological risk of ΣOPFRs in all the samples ranged from 0.08-1.08, indicating a medium to high risk level. The results offer a comprehensive understanding of OPFR pollution in agricultural soils in the YRD region and can be useful for pollution control that mitigates ecological and health risks in this region.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Retardadores de Llama , Organofosfatos , Contaminantes del Suelo , Suelo , Retardadores de Llama/análisis , China , Medición de Riesgo , Contaminantes del Suelo/análisis , Organofosfatos/análisis , Suelo/química , Ríos/química , Humanos
5.
Nat Food ; 5(4): 301-311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605129

RESUMEN

Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.


Asunto(s)
Compuestos de Metilmercurio , Oryza , Microbiología del Suelo , Contaminantes del Suelo , Bioacumulación , Compuestos de Metilmercurio/metabolismo , Compuestos de Metilmercurio/análisis , Microbiota/efectos de los fármacos , Oryza/metabolismo , Oryza/química , Oryza/microbiología , Suelo/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis
6.
Sci Total Environ ; 929: 172439, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621540

RESUMEN

Biochar and soil carbon sequestration hold promise in mitigating global warming by storing carbon in the soil. However, the interaction between biochar properties, soil carbon-nitrogen cycling, and nitrogen fertilizer application's impact on soil carbon-nitrogen balance remained unclear. Herein, we conducted batch experiments to study the effects and mechanisms of rice straw biochar application (produced at 300, 500, and 700 °C) on net greenhouse gas emissions (CO2, N2O, CH4) in upland soils under different forms of nitrogen fertilizers. The findings revealed that (NH4)2SO4 and urea significantly elevated soil carbon dioxide equivalent emissions, ranging from 28 to 61.7 kg CO2e/ha and 8.2 to 37.7 kg CO2e/ha, respectively. Conversely, KNO3 reduced soil CO2e emissions, ranging from 2.2 to 13.6 kg CO2e/ha. However, none of these three nitrogen forms exhibited a significant effect on CH4 emissions. The pyrolysis temperature of biochar was found negatively correlated with soil CO2 and N2O emissions. The alkaline substances presented in biochar pyrolyzed at 500-700 °C raised soil pH, increased the ratio of Gram-negative to Gram-positive bacteria, and enhanced the relative abundance of Sphingomonadaceae. Moreover, the co-application of KNO3 based nitrogen fertilizer and biochar increased the total carbon/inorganic nitrogen ratio and reduces the relative abundance of Nitrospirae. This series of reactions led to a significant increase in soil DOC content, meanwhile reduced soil CO2 emissions, and inhibited the nitrification process and decreased the emission of soil N2O. This study provided a scientific basis for the rational application of biochar in soil.


Asunto(s)
Dióxido de Carbono , Carbón Orgánico , Fertilizantes , Nitrógeno , Óxido Nitroso , Suelo , Carbón Orgánico/química , Fertilizantes/análisis , Suelo/química , Óxido Nitroso/análisis , Nitrógeno/análisis , Dióxido de Carbono/análisis , Contaminantes Atmosféricos/análisis , Gases de Efecto Invernadero/análisis , Agricultura/métodos
7.
Sci Total Environ ; 927: 172438, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614354

RESUMEN

Soil vapor extraction (SVE) was a cost-effective technology for remediating volatile and semi-volatile organic contaminated soils. Many factors, including SVE parameters, soil properties, and contaminant characteristics, significantly influenced the remediation efficiency of SVE. The optimal conditions for organic pollutants removal efficiency were site-specific and varied among studies. Therefore, a generalized model was needed to predict the remediation efficiency of SVE in organic contaminated soils. This study employed machine learning to predict the removal efficiency of organic pollutants by SVE. The model's development was based on a trainset, and its predictive capabilities were evaluated using a testset. An XGBoost (XGB) model was derived from literature data (R2 = 0.9728). Time, pollutant type, and temperature were identified as the three most important features affecting SVE remediation efficiency. The accuracy (R2 = 0.9799) and universality of the model were enhanced through an optimization scheme. The developed XGB model demonstrated the ability to predict the removal efficiency of organic pollutants by considering all collected influential factors. The mechanism of multi-factor interaction on remediation efficiency was clarified. Overall, this study would contribute to evaluating the remediation potential of SVE for specific organic contaminated soils, aiding in maximizing the removal efficiency of organic pollutants under optimal conditions.

8.
Environ Pollut ; 346: 123667, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428795

RESUMEN

Thermal desorption (TD) remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated sites is known for its high energy consumption and cost implications. The key to solving this issue lies in analyzing the PAHs desorption process, defining remediation endpoints, and developing prediction models to prevent excessive remediation. Establishing an accurate prediction model for remediation efficiency, which involves a systematic consideration of soil properties, TD parameters, and PAH characteristics, poses a significant challenge. This study employed a machine learning approach for predicting the remediation efficiency based on batch experiment results. The results revealed that the extreme gradient boosting (XGB) model yielded the most accurate predictions (R2 = 0.9832). The importance of features in the prediction process was quantified. A model optimization scheme was proposed, which involved integrating features based on their relevance, importance, and partial dependence. This integration not only reduced the number of input features but also enhanced prediction accuracy (R2 = 0.9867) without eliminating any features. The optimized XGB model was validated using soils from sites, demonstrating a prediction error of less than 30%. The optimized XGB model aids in identifying the most optimal conditions for thermal desorption to maximize the remediation efficiency of PAH-contaminated sites under relative cost and energy-saving conditions.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Biodegradación Ambiental
9.
Nat Food ; 5(1): 72-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177223

RESUMEN

Dietary exposure to methylmercury (MeHg) causes irreversible damage to human cognition and is mitigated by photolysis and microbial demethylation of MeHg. Rice (Oryza sativa L.) has been identified as a major dietary source of MeHg. However, it remains unknown what drives the process within plants for MeHg to make its way from soils to rice and the subsequent human dietary exposure to Hg. Here we report a hidden pathway of MeHg demethylation independent of light and microorganisms in rice plants. This natural pathway is driven by reactive oxygen species generated in vivo, rapidly transforming MeHg to inorganic Hg and then eliminating Hg from plants as gaseous Hg°. MeHg concentrations in rice grains would increase by 2.4- to 4.7-fold without this pathway, which equates to intelligence quotient losses of 0.01-0.51 points per newborn in major rice-consuming countries, corresponding to annual economic losses of US$30.7-84.2 billion globally. This discovered pathway effectively removes Hg from human food webs, playing an important role in exposure mitigation and global Hg cycling.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Recién Nacido , Humanos , Mercurio/metabolismo , Oryza/metabolismo , Cadena Alimentaria , Compuestos de Metilmercurio/metabolismo , Desmetilación
11.
Environ Sci Technol ; 57(33): 12442-12452, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37506289

RESUMEN

Soil stores a large amount of mercury (Hg) that has adverse effects on human health and ecosystem safety. Significant uncertainties still exist in revealing environmental drivers of soil Hg accumulation and predicting global Hg distribution owing to the lack of field data from global standardized analyses. Here, we conducted a global standardized field survey and explored a holistic understanding of the multidimensional environmental drivers of Hg accumulation in global surface soils. Hg content in surface soils from our survey ranges from 3.8 to 618.2 µg kg-1 with an average of 74.0 µg kg-1 across the globe. Atmospheric Hg deposition, particularly vegetation-induced elemental Hg0 deposition, is the major source of surface soil Hg. Soil organic carbon serves as the major substrate for sequestering Hg in surface soils and is significantly influenced by agricultural management, litterfall, and elevation. For human activities, changing land-use could be a more important contributor than direct anthropogenic emissions. Our prediction of a new global Hg distribution highlights the hot spots (high Hg content) in East Asia, the Northern Hemispheric temperate/boreal regions, and tropical areas, while the cold spots (low Hg content) are in arid regions. The holistic understanding of multidimensional environmental drivers helps to predict the Hg distribution in global surface soils under a changing global environment.


Asunto(s)
Mercurio , Contaminantes del Suelo , Humanos , Mercurio/análisis , Suelo/química , Ecosistema , Carbono , Monitoreo del Ambiente
12.
J Hazard Mater ; 457: 131699, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37270960

RESUMEN

Microplastics (MPs) as emerging contaminants have accumulated extensively in agricultural ecosystems and are known to exert important effects on biogeochemical processes. However, how MPs in paddy soils influence the conversion of mercury (Hg) to neurotoxic methylmercury (MeHg) remains poorly understood. Here, we evaluated the effects of MPs on Hg methylation and associated microbial communities in microcosms using two typical paddy soils in China (i.e., yellow and red soils). Results showed that the addition of MPs significantly increased MeHg production in both soils, which could be related to higher Hg methylation potential in the plastisphere than in the bulk soil. We found significant divergences in the community composition of Hg methylators between the plastisphere and the bulk soil. In addition, the plastisphere had higher proportions of Geobacterales in the yellow soil and Methanomicrobia in the red soil compared with the bulk soil, respectively; and plastisphere also had more densely connected microbial groups between non-Hg methylators and Hg methylators. These microbiota in the plastisphere are different from those in the bulk soil, which could partially account for their distinct MeHg production ability. Our findings suggest plastisphere as a unique biotope for MeHg production and provide new insights into the environment risks of MP accumulation in agricultural soils.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Microbiota , Oryza , Contaminantes del Suelo , Compuestos de Metilmercurio/química , Suelo/química , Plásticos , Contaminantes del Suelo/análisis , Mercurio/análisis , Oryza/química
13.
J Hazard Mater ; 455: 131602, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37178535

RESUMEN

Sulfur has a high affinity for mercury (Hg) and can serve as effective treating agent for Hg pollution. However, conflict effects between reducing Hg mobility and promoting Hg methylation by sulfur were found in recent studies, and there is a gap in understanding the potential mechanism of MeHg production under different sulfur-treated species and doses. Here, we investigated and compared the MeHg production in Hg-contaminated paddy soil and its accumulation in rice under elemental sulfur or sulfate treatment at a relatively low (500 mg·kg-1) or high (1000 mg·kg-1) level. The associated potential molecular mechanisms are also discussed with the help of density functional theory (DFT) calculation. Pot experiments demonstrate that both elemental sulfur and sulfate at high exposure levels increased MeHg production in soil (244.63-571.72 %) and its accumulation in raw rice (268.73-443.50 %). Coupling the reduction of sulfate or elemental sulfur and decrease of soil redox potential leads to the detachment of Hg-polysulfide complexes from the surface of HgS which can be explained by DFT calculations. Enhancement of free Hg and Fe release through reducing Fe(III) oxyhydroxides further promotes soil MeHg production. The results provide clues for understanding the mechanism by which exogenous sulfur promotes MeHg production in paddies and paddy-like environments and give new insights for decreasing Hg mobility by regulating soil conditions.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Suelo , Compuestos Férricos , Contaminantes del Suelo/análisis , Mercurio/análisis , Azufre , Sulfatos , Monitoreo del Ambiente
14.
Environ Pollut ; 329: 121719, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105467

RESUMEN

Selenium (Se) amendment could reduce mercury (Hg) bioaccumulation in crops, but sometimes it could cause excessive Se accumulation in crops and potential Se exposure risks for humans. In this study, we designed and synthesized selenium and sulfur-modified montmorillonite materials (Se/S-Mont) to effectively reduce mercury levels and avoid excessive Se enrichment in plants. The results of pot experiments (1 g Se/S-Mont/100 g soil) and field microplot trials (0.3 g Se/S-Mont/100 g soil, 8 t/ha) showed that Se/S-Mont amendments significantly reduced the Hg concentrations in water spinach and hybrid Pennisetum by 28-68% and 57%-92% (P < 0.05), respectively, while they did not lead to excessive Se bioaccumulation in the plants. Se/S-Mont was more efficient in mitigating soil Hg pollution than adding raw materials (e.g., NaSeO3) and their combinations, and they significantly reduced the available Se fraction in the soil and the Se levels in the plants (P < 0.05). The potential mechanisms revealed by X-ray absorption near-edge spectra (XANES) and pot experiments were the adsorption and slow release of Hg, S, and Se by Se/S-Mont, the high affinity between Hg and Se, competition between Se and S, and the formation of stable complexes containing Se-S-Hg. The Se/S-Mont immobilizer was easy to prepare and required the application of small amounts, and the remediation effect was relatively stable and exhibited few negative effects; therefore, the approach showed high environmental and economic potentials.


Asunto(s)
Mercurio , Selenio , Humanos , Mercurio/análisis , Bentonita , Granjas , Suelo , Azufre
15.
J Hazard Mater ; 448: 130983, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36860084

RESUMEN

The imbalance of nutrient elements in paddy soil could affect biogeochemical processes; however, how the key elements input influence microbially-driven conversion of mercury (Hg) to neurotoxic methylmercury (MeHg) remains virtually unknown. Herein, we conducted a series of microcosm experiments to explore the effects of certain species of carbon (C), nitrogen (N) and sulfur (S) on microbial MeHg production in two typical paddy soils (yellow and black soil). Results showed that the addition of C alone into the soils increased MeHg production approximately 2-13 times in the yellow and black soils; while the combined addition of N and C mitigated the C- promoting effect significantly. Added S also had a buffering effect on C-facilitated MeHg production in the yellow soil despite the extent being lower than that of N addition, whereas this effect was not obvious for the black soil. MeHg production was positively correlated with the abundance of Deltaproteobactera-hgcA in both soils, and the changes in MeHg production were related to the shifts of Hg methylating community resulting from C, N, and S imbalance. We further found that the changes in the proportions of dominant Hg methylators such as Geobacter and some unclassified groups could contribute to the variations in MeHg production under different treatments. Moreover, the enhanced microbial syntrophy with adding N and S might contribute to the reduced C-promoting effect on MeHg production. This study has important implications for better understanding of microbes-driven Hg conversion in paddies and wetlands with nutrient elements input.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Metilación , Nitrógeno , Azufre , Carbono , Suelo
16.
J Agric Food Chem ; 71(5): 2658-2665, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36695191

RESUMEN

Cardamine violifolia is a Se hyperaccumulator found in Enshi, China. In this study, spatial metallomics was applied to visualize the distribution and speciation of Se in a single seed of C. violifolia. It was found that Se reached 1729.89 ± 28.14 mg/kg and the main Se species were SeCys and SeMet in bulk seeds. Further in situ study on a single seed found that the methylated Se species located mostly in the episperm. This is the first visualized evidence of the in situ distribution of methylated Se species in the seeds of C. violifolia. In all, spatial metallomics finds a preferable accumulation of methylated Se species in the seed coat, which deepens the understanding of the tolerance of Se by C. violifolia. The protocol applied in this study may also be used for the understanding of the tolerance of heavy metals/metalloids in other hyperaccumulators.


Asunto(s)
Cardamine , Selenio , Semillas , China
17.
J Trace Elem Med Biol ; 76: 127126, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36623421

RESUMEN

Mercury (Hg) is a global pollutant that threatens the environment and human health. As a major producer, emitter and consumer of Hg, China is currently taking different measures to curb mercury pollution in accordance with the requirements of the Minamata Convention on Mercury. Blood Hg can reflect the human body's recent exposure to Hg. This review summarized the temporal changes in blood Hg concentrations in newborns and the general public in China from 1980 s to 2020 s. It was shown that the blood Hg concentrations of newborns showed the downward trend, although it was not significant. The general public Hg concentrations showed a trend of first increase and then decrease trend. Most of the cord blood Hg and venous blood Hg concentrations in China were lower than the USEPA reference concentration of 5.8 µg/L. Since low-dose prenatal Hg exposure can affect fetal and neonatal development, continuous attention needs to be paid to reduce maternal and neonatal Hg exposure. The information provided in this review may lay a basis for the effectiveness evaluation on the implementation of Minamata Convention on Mercury.


Asunto(s)
Contaminantes Ambientales , Mercurio , Femenino , Humanos , Recién Nacido , Embarazo , Pueblos del Este de Asia , Contaminantes Ambientales/análisis , Contaminación Ambiental , Sangre Fetal/química , Mercurio/análisis , China
18.
Gen Thorac Cardiovasc Surg ; 71(2): 113-120, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35723828

RESUMEN

BACKGROUND: The aim of this study was to investigate the relationship between typhoon, climate change, and acute Stanford type A aortic dissection (TAAD) in southern of Zhejiang Province in China. METHOD: 371 patients with TAAD were admitted to three hospitals (the aortic dissection center) in southern of Zhejiang Province, China from January 2015 to December 2020, and data were retrospectively collected, the data included (1) the number of patients admitted in different months and seasons, (2) daily meteorological data in southern of Zhejiang Province, and (3) typhoon information were retrospectively analyzed. RESULTS: The number of TAAD occurred in winter was the highest and in summer was the lowest. The incidence of TAAD was correlated with minimum temperature, maximum wind speed, mean wind speed, and water vapor pressure (P < 0.05). Maximum wind speed (RR 0.37; 95% CI 0.17 to 0.80, P = 0.01) and water vapor pressure (RR 0.96; 95% CI 0.92 to 1, P = 0.03) were the protective factor. The occurrence incidence of TAAD under the influence of typhoon climate was less than that during the period not affected by typhoon (P < 0.05). CONCLUSION: There was a correlation between typhoon, climate change, and the occurrence of TAAD in southern Zhejiang Province. Wind speed, vapor pressure, and typhoon may be protective factors.


Asunto(s)
Disección Aórtica , Tormentas Ciclónicas , Humanos , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/epidemiología , China/epidemiología , Cambio Climático , Estudios Retrospectivos
19.
Environ Pollut ; 318: 120918, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563986

RESUMEN

Mercury (Hg) is a persistent and toxic metal while mercury selenide (HgSe) is generally considered as the environmental sink of Hg in its biogeochemical cycle. Recent studies found nano-sized HgSe (nano-HgSe) could be transformed by certain bacteria. This raises safety concerns about the application of selenium (Se) to curb Hg contamination in farmlands. Therefore, hydroponic experiments were performed in which rice plants were cultured with different concentrations of nano-HgSe and micro-sized HgSe (micro-HgSe) to explore their bioavailability and toxicity. It was found that both nano-HgSe and micro-HgSe did not affect the germination of rice seeds but affected the growth of rice seedlings. However, nano-HgSe could be more readily absorbed by roots and transferred to the aboveground parts compared to micro-HgSe. The highest Hg and Se levels were found to be 5255.67 ± 2496.14 µg/g and 1743.75 ± 61.87 µg/g, respectively in roots when exposed to 5000 mg/L nano-HgSe. Besides, small portion (1.2%) of methylmercury (MeHg) to total Hg was found accumulated in rice stem when exposed to 100 mg/L nano-HgSe, suggesting that nano-HgSe could be decomposed. Furthermore, nano-HgSe exposure brought oxidative damage to rice with decreased chlorophyll content and GSH-Px activity. In all, nano-HgSe was found to be more absorbable, transportable and methylated in rice plant compared to micro-HgSe. This suggests that although Se application in Hg contaminated farmland is an effective way to reduce the bioavailability of Hg, the risk of the possible remobilization of HgSe should not be neglected. Besides, the finding that nano-HgSe can act as an environmental source of Hg for plants deepens the understanding of biogeochemical cycle of Hg. More works are required to study the factors affecting the formation of nano-HgSe in the environment and the mechanisms of Hg methylation in rice plants after exposure to nano-HgSe.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Selenio , Contaminantes del Suelo , Mercurio/toxicidad , Mercurio/análisis , Oryza/química , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/química , Selenio/análisis
20.
Toxicology ; 484: 153396, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36521575

RESUMEN

Mercury (Hg) is harmful to the environment and human health. The gut plays important roles as the biological, chemical, mechanical, and immune barriers in animals and human beings. It has been known that Hg can be absorbed and methylated/demethylated in the gut, on the other hand, the impacts of Hg to the gut (especially the gut microbiota) is less studied. This review paper summarizes the impacts of inorganic Hg (IHg) and methyl Hg (MeHg) on gut barriers and the extraintestinal effects (damage to other organs such as the liver and brain). Both IHg and MeHg were found to cause intestinal microbial disorders, abnormal metabolites production, tight junction damage, and immune responses in the gut. The damage to the gut also contributed to the extraintestinal effects like the hepatotoxicity by IHg and the neurotoxicity by MeHg. In all, it is proposed that the gut should be considered as an important target tissue of Hg exposure, and the regulation of gut microbiota may have the potential for the prevention and control of the toxicity of Hg.


Asunto(s)
Microbioma Gastrointestinal , Mercurio , Compuestos de Metilmercurio , Animales , Humanos , Mercurio/toxicidad , Mercurio/metabolismo , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/metabolismo , Encéfalo/metabolismo , Hígado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA