Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Small ; : e2400042, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38600889

RESUMEN

Modulating the coordination environment of the metal active center is an effective method to boost the catalytic performances of metal-organic frameworks (MOFs) for oxygen evolution reaction (OER). However, little attention has been paid to the halogen effects on the ligands engineering. Herein, a series of MOFs X─FeNi-MOFs (X = Br, Cl, and F) is constructed with different coordination microenvironments to optimize OER activity. Theoretical calculations reveal that with the increase in electronegativity of halogen ions in terephthalic acid molecular (TPA), the Bader charge of Ni atoms gets larger and the Ni-3d band center and O-2p bands move closer to the Fermi level. This indicates that an increase in ligand negativity of halogen ions in TPA can promote the adsorption ability of catalytic sites to oxygen-containing intermediates and reduce the activation barrier for OER. Experimental also demonstrates that F─FeNi-MOFs exhibit the highest catalytic activity with an ultralow overpotential of 218 mV at 10 mA cm-2, outperforming most otate-of-the-art Fe/Co/Ni-based MOFs catalysts, and the enhanced mass activity by seven times compared with that for the sample before ligands engineering. This work opens a new avenue for the realization of the modulation of NiFe─O bonding by halogen ion in TPA and improves the OER performance of MOFs.

2.
ChemSusChem ; : e202400239, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481084

RESUMEN

Water electrolysis driven by "green electricity" is an ideal technology to realize energy conversion and store renewable energy into hydrogen. With the development of proton exchange membrane (PEM), water electrolysis in acidic media suitable for many situations with an outstanding advantage of high gas purity has attracted significant attention. Compared with hydrogen evolution reaction (HER) in water electrolysis, oxygen evolution reaction (OER) is a kinetic sluggish process that needs a higher overpotential. Especially in acidic media, OER process poses higher requirements for the electrocatalysts, such as high efficiency, high stability and low costs. This review focuses on the acidic OER electrocatalysis, reaction mechanisms, and critical parameters used to evaluate performance. Especially the modification strategies applied in the design and construction of new-type electrocatalysts are also summarized. The characteristics of traditional noble metal-based electrocatalysts and the noble metal-free electrocatalysts developed in recent decades are compared and discussed. Finally, the current challenges for the most promising acidic OER electrocatalysts are presented, together with a perspective for future water electrolysis.

3.
Proc Natl Acad Sci U S A ; 121(6): e2318174121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289955

RESUMEN

Atomically dispersed catalysts are a promising alternative to platinum group metal catalysts for catalyzing the oxygen reduction reaction (ORR), while limited durability during the electrocatalytic process severely restricts their practical application. Here, we report an atomically dispersed Co-doped carbon-nitrogen bilayer catalyst with unique dual-axial Co-C bonds (denoted as Co/DACN) by a smart phenyl-carbon-induced strategy, realizing highly efficient electrocatalytic ORR in both alkaline and acidic media. The corresponding half-wave potential for ORR is up to 0.85 and 0.77 V (vs. reversible hydrogen electrode (RHE)) in 0.5 M H2SO4 and 0.1 M KOH, respectively, representing the best ORR activity among all non-noble metal catalysts reported to date. Impressively, the Zn-air battery (ZAB) equipped with Co/DACN cathode achieves outstanding durability after 1,688 h operation at 10 mA cm-2 with a high current density (154.2 mA cm-2) and a peak power density (210.1 mW cm-2). Density functional theory calculations reveal that the unique dual-axial cross-linking Co-C bonds of Co/DACN significantly enhance the stability during ORR and also facilitate the 4e- ORR pathway by forming a joint electron pool due to the improved interlayer electron mobility. We believe that axial engineering opens a broad avenue to develop high-performance heterogeneous electrocatalysts for advanced energy conversion and storage.

4.
Nat Commun ; 14(1): 6849, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891185

RESUMEN

Atomic-level coordination engineering is an efficient strategy for tuning the catalytic performance of single-atom catalysts (SACs). However, their rational design has so far been plagued by the lack of a universal correlation between the coordination symmetry and catalytic properties. Herein, we synthesised planar-symmetry-broken CuN3 (PSB-CuN3) SACs through microwave heating for electrocatalytic CO2 reduction. Remarkably, the as-prepared catalysts exhibited a selectivity of 94.3% towards formate at -0.73 V vs. RHE, surpassing the symmetrical CuN4 catalyst (72.4% at -0.93 V vs. RHE). In a flow cell equipped with a PSB-CuN3 electrode, over 90% formate selectivity was maintained at an average current density of 94.4 mA cm-2 during 100 h operation. By combining definitive structural identification with operando X-ray spectroscopy and theoretical calculations, we revealed that the intrinsic local symmetry breaking from planar D4h configuration induces an unconventional dsp hybridisation, and thus a strong correlation between the catalytic activity and microenvironment of metal centre (i.e., coordination number and distortion), with high preference for formate production in CuN3 moiety. The finding opens an avenue for designing efficient SACs with specific local symmetries for selective electrocatalysis.

5.
Nat Commun ; 14(1): 2574, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142577

RESUMEN

Photoelectrochemical water splitting has long been considered an ideal approach to producing green hydrogen by utilizing solar energy. However, the limited photocurrents and large overpotentials of the anodes seriously impede large-scale application of this technology. Here, we use an interfacial engineering strategy to construct a nanostructural photoelectrochemical catalyst by incorporating a semiconductor CdS/CdSe-MoS2 and NiFe layered double hydroxide for the oxygen evolution reaction. Impressively, the as-prepared photoelectrode requires an low potential of 1.001 V vs. reversible hydrogen electrode for a photocurrent density of 10 mA cm-2, and this is 228 mV lower than the theoretical water splitting potential (1.229 vs. reversible hydrogen electrode). Additionally, the generated current density (15 mA cm-2) of the photoelectrode at a given overpotential of 0.2 V remains at 95% after long-term testing (100 h). Operando X-ray absorption spectroscopy revealed that the formation of highly oxidized Ni species under illumination provides large photocurrent gains. This finding opens an avenue for designing high-efficiency photoelectrochemical catalysts for successive water splitting.

6.
Angew Chem Int Ed Engl ; 62(26): e202302795, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37046392

RESUMEN

Efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reactions are key to water electrolysis. Herein, we report a built-in electric field (BEF) strategy to fabricate heterogeneous nickel phosphide-cobalt nanowire arrays grown on carbon fiber paper (Ni2 P-CoCH/CFP) with large work function difference (ΔΦ) as bifunctional electrocatalysts for overall water splitting. Impressively, Ni2 P-CoCH/CFP exhibits a remarkable catalytic activity for hydrogen and oxygen evolution reactions to obtain 10 mA cm-2 , respectively. Moreover, the assembled lab-scale electrolyzer driven by an AAA battery delivers excellent stability after 50 h electrocatalysis with a 100 % faradic efficiency. Computational calculations combining with experiments reveal the interface-induced electric field effect facilitates asymmetrical charge distributions, thereby regulating the adsorption/desorption of the intermediates during reactions. This work offers an avenue to rationally design high-performance heterogeneous electrocatalysts.


Asunto(s)
Nanocables , Electrólisis , Hidrógeno , Oxígeno , Agua
7.
Nat Commun ; 14(1): 2475, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120624

RESUMEN

The chlor-alkali process plays an essential and irreplaceable role in the modern chemical industry due to the wide-ranging applications of chlorine gas. However, the large overpotential and low selectivity of current chlorine evolution reaction (CER) electrocatalysts result in significant energy consumption during chlorine production. Herein, we report a highly active oxygen-coordinated ruthenium single-atom catalyst for the electrosynthesis of chlorine in seawater-like solutions. As a result, the as-prepared single-atom catalyst with Ru-O4 moiety (Ru-O4 SAM) exhibits an overpotential of only ~30 mV to achieve a current density of 10 mA cm-2 in an acidic medium (pH = 1) containing 1 M NaCl. Impressively, the flow cell equipped with Ru-O4 SAM electrode displays excellent stability and Cl2 selectivity over 1000 h continuous electrocatalysis at a high current density of 1000 mA cm-2. Operando characterizations and computational analysis reveal that compared with the benchmark RuO2 electrode, chloride ions preferentially adsorb directly onto the surface of Ru atoms on Ru-O4 SAM, thereby leading to a reduction in Gibbs free-energy barrier and an improvement in Cl2 selectivity during CER. This finding not only offers fundamental insights into the mechanisms of electrocatalysis but also provides a promising avenue for the electrochemical synthesis of chlorine from seawater electrocatalysis.

8.
Nat Commun ; 14(1): 818, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781856

RESUMEN

Metal-free electrocatalysts represent a main branch of active materials for oxygen evolution reaction (OER), but they excessively rely on functionalized conjugated carbon materials, which substantially restricts the screening of potential efficient carbonaceous electrocatalysts. Herein, we demonstrate that a mesostructured polyacrylate hydrogel can afford an unexpected and exceptional OER activity - on par with that of benchmark IrO2 catalyst in alkaline electrolyte, together with a high durability and good adaptability in various pH environments. Combined theoretical and electrokinetic studies reveal that the positively charged carbon atoms within the carboxylate units are intrinsically active toward OER, and spectroscopic operando characterizations also identify the fingerprint superoxide intermediate generated on the polymeric hydrogel backbone. This work expands the scope of metal-free materials for OER by providing a new class of polymeric hydrogel electrocatalysts with huge extension potentials.

9.
Chemistry ; 29(3): e202202000, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36274220

RESUMEN

Cation-tuning engineering has become a new frontier in altering the electronic structure of electrocatalysts, which has been employed to enhance their electrochemical performance. Significant efforts have been made to promote the electrochemical performance of transition metal-based materials during oxygen electrocatalysis and related energy devices such as Zn-air batteries. Herein, the advantages of cation-tuning engineering, including cation vacancies/defects and cation doping, in the modification of the electronic structure of transition metal oxide catalysts are discussed. Additionally, practical applications of the cation-tuning engineering strategy are reviewed in detail with a special emphasis on oxygen reduction reaction and oxygen evolution reaction. Lastly, challenges and future opportunities in this field are also proposed.

10.
Adv Mater ; 35(1): e2206828, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36308045

RESUMEN

Room-temperature sodium-sulfur (RT-Na/S) batteries possess high potential for grid-scale stationary energy storage due to their low cost and high energy density. However, the issues arising from the low S mass loading and poor cycling stability caused by the shuttle effect of polysulfides seriously limit their operating capacity and cycling capability. Herein, sulfur-doped graphene frameworks supporting atomically dispersed 2H-MoS2 and Mo1 (S@MoS2 -Mo1 /SGF) with a record high sulfur mass loading of 80.9 wt.% are synthesized as an integrated dual active sites cathode for RT-Na/S batteries. Impressively, the as-prepared S@MoS2 -Mo1 /SGF display unprecedented cyclic stability with a high initial capacity of 1017 mAh g-1 at 0.1 A g-1 and a low-capacity fading rate of 0.05% per cycle over 1000 cycles. Experimental and computational results including X-ray absorption spectroscopy, in situ synchrotron X-ray diffraction and density-functional theory calculations reveal that atomic-level Mo in this integrated dual-active-site forms a delocalized electron system, which could improve the reactivity of sulfur and reaction reversibility of S and Na, greatly alleviating the shuttle effect. The findings not only provide an effective strategy to fabricate high-performance dual-site cathodes, but also deepen the understanding of their enhancement mechanisms at an atomic level.

11.
Small Methods ; 6(10): e2200773, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36050891

RESUMEN

Oxygen evolution reaction (OER) is an energy-determined half-reaction for water splitting and many other energy conversion processes, such as rechargeable metal-air batteries and CO2 reduction, due to its four-electron sluggish process. To reduce the energy consumption and cost of these advanced technologies, various transition metal-based nanomaterials, like metal oxides/hydroxides, nitride, and phosphide are synthesized. Among these, metal-organic framework (MOF)-based materials are considered as the ideal candidate for the fabrication of efficient OER electrocatalysts owing to their unique physicochemical properties. In this review, the fundamental catalytic mechanisms and key evaluation parameters of OER in acidic and alkaline media are presented first. Then, design strategies for MOF-based OER catalysts and research progress in the study of the structure-performance relationship are summarized. Subsequently, the recent research advances of MOF-based OER electrocatalysts in alkaline, acidic, and neutral electrolytes are overviewed. Finally, current challenges and future opportunities are provided under the frame of materials design, theoretical understanding, advanced characterization techniques, and industrial applications.

12.
J Phys Chem Lett ; 13(29): 6867-6874, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35861318

RESUMEN

Photoelectrocatalytic (PEC) CO2 reduction to value-added chemicals is a promising solution to address the energy and environmental issues we face currently. Herein, a unique photocathode Bi@ZFO NTs (Bi and α-Fe2O3 co-modified ZnO nanorod arrays) with high utilization of visible light and sharp-tips effect are successfully prepared using a facile method. Impressively, the performance of Bi@ZFO NTs for PEC CO2 reduction to HCOOH included small onset potential (-0.53 V vs RHE), Tafel slope (101.2 mV dec-1), and a high faraday efficiency of 61.2% at -0.65 V vs RHE as well as favorable stability over 4 h in an aqueous system under visible light illumination. Also, a series of experiments were performed to investigate the origin of its high activity, indicating that the metallic Bi and α-Fe2O3/ZnO nanojunction should be responsible for the favorable CO2 adsorption/activation and charge transition/carrier separation, respectively. Density functional theory calculations reveal that the Bi@ZFO NTs could lower the intermediates' energy barrier of HCOO* and HCOOH* to form HCOOH due to the strong interaction of Bi and α-Fe2O3/ZnO.

13.
Angew Chem Int Ed Engl ; 61(31): e202206050, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35582843

RESUMEN

Despite the fact that high-valent nickel-based oxides exhibit promising catalytic activity for the urea oxidation reaction (UOR), the fundamental questions concerning the origin of the high performance and the structure-activity correlations remain to be elucidated. Here, we unveil the underlying enhanced mechanism of UOR by employing a series of prepared cation-vacancy controllable LiNiO2 (LNO) model catalysts. Impressively, the optimized layered LNO-2 exhibits an extremely low overpotential at 10 mA cm-2 along with excellent stability after the 160 h test. Operando characterisations combined with the theoretical analysis reveal the activated lattice oxygen in layered LiNiO2 with moderate cation vacancies triggers charge disproportion of the Ni site to form Ni4+ species, facilitating deprotonation in a lattice oxygen involved catalytic process.

14.
Adv Mater ; 34(16): e2106541, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35191113

RESUMEN

Electrocatalytic hydrogen peroxide (H2 O2 ) synthesis via the two-electron oxygen reduction reaction (2e ORR) pathway is becoming increasingly important due to the green production process. Here, cationic vacancies on nickel phosphide, as a proof-of-concept to regulate the catalyst's physicochemical properties, are introduced for efficient H2 O2 electrosynthesis. The as-fabricated Ni cationic vacancies (VNi )-enriched Ni2- x P-VNi electrocatalyst exhibits remarkable 2e ORR performance with H2 O2 molar fraction of >95% and Faradaic efficiencies of >90% in all pH conditions under a wide range of applied potentials. Impressively, the as-created VNi possesses superb long-term durability for over 50 h, suppassing all the recently reported catalysts for H2 O2 electrosynthesis. Operando X-ray absorption near-edge spectroscopy (XANES) and synchrotron Fourier transform infrared (SR-FTIR) combining theoretical calculations reveal that the excellent catalytic performance originates from the VNi -induced geometric and electronic structural optimization, thus promoting oxygen adsorption to the 2e ORR favored "end-on" configuration. It is believed that the demonstrated cation vacancy engineering is an effective strategy toward creating active heterogeneous catalysts with atomic precision.

15.
J Am Chem Soc ; 144(5): 2208-2217, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35099956

RESUMEN

Iridium (Ir)-based electrocatalysts are widely explored as benchmarks for acidic oxygen evolution reactions (OERs). However, further enhancing their catalytic activity remains challenging due to the difficulty in identifying active species and unfavorable architectures. In this work, we synthesized ultrathin Ir-IrOx/C nanosheets with ordered interlayer space for enhanced OER by a nanoconfined self-assembly strategy, employing block copolymer formed stable end-merged lamellar micelles. The interlayer distance of the prepared Ir-IrOx/C nanosheets was well controlled at ∼20 nm and Ir-IrOx nanoparticles (∼2 nm) were uniformly distributed within the nanosheets. Importantly, the fabricated Ir-IrOx/C electrocatalysts display one of the lowest overpotential (η) of 198 mV at 10 mA cm-2geo during OER in an acid medium, benefiting from their features of mixed-valence states, rich electrophilic oxygen species (O(II-δ)-), and favorable mesostructured architectures. Both experimental and computational results reveal that the mixed valence and O(II-δ)- moieties of the 2D mesoporous Ir-IrOx/C catalysts with a shortened Ir-O(II-δ)- bond (1.91 Å) is the key active species for the enhancement of OER by balancing the adsorption free energy of oxygen-containing intermediates. This strategy thus opens an avenue for designing high performance 2D ordered mesoporous electrocatalysts through a nanoconfined self-assembly strategy for water oxidation and beyond.

16.
Angew Chem Int Ed Engl ; 61(11): e202110186, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-34490688

RESUMEN

Studying structure-activity correlations of electrocatalysts is essential for improving the conversion of electrical to chemical energy. Recently, increasing evidence obtained by operando characterization techniques reveal that the structural evolution of catalysts caused by the interplay with electric fields, electrolytes and reactants/intermediates brings about the formation of real active sites. Hence, it is time to summarize structural evolution related research advances and envisage future developments. In this Minireview, we first introduce the fundamental concepts associated with structural evolution (e.g., catalysts, active sites/centers and stability/lifetime) and their relevance. Then, the multiple triggers of structural evolution and advanced operando characterizations are discussed. Significantly, a brief overview of structural evolution and its reversibility in heterogeneous electrocatalysis is provided, especially for the representative electrocatalytic oxygen evolution reaction (OER) and CO2 reduction reaction (CO2 RR) processes. Lastly, key challenges and opportunities in this exciting field are highlighted.

17.
Angew Chem Int Ed Engl ; 61(16): e202114696, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-34970837

RESUMEN

Atomic substitutions at the tetrahedral site (ATd ) could theoretically achieve an efficient optimization of the charge at the octahedral site (BOh ) through the ATd -O-BOh interactions in the spinel oxides (AB2 O4 ). Despite substantial progress having been made, the precise control and adjustment of the spinel oxides are still challenging owing to the complexity of their crystal structure. In this work, we demonstrate a simple solvent method to tailor the structures of spinel oxides and use the spinel oxide composites (ACo2 O4 /NCNTs, A=Mn, Co, Ni, Cu, Zn) for oxygen electrocatalysis. The optimized MnCo2 O4 /NCNTs exhibit high activity and excellent durability for oxygen reduction/evolution reactions. Remarkably, the rechargeable liquid Zn-air battery equipped with a MnCo2 O4 /NCNTs cathode affords a specific capacity of 827 mAh gZn -1 with a high power density of 74.63 mW cm-2 and no voltage degradation after 300 cycles at a high charging-discharging rate (5 mA cm-2 ). The density functional theory (DFT) calculations reveal that the substitution could regulate the ratio of Co3+ /Co2+ and thereby lead to the modulation of the electronic structure accompanied with the movement of the d-band center. The tetrahedral and octahedral sites interact through the Mn-O-Co, and the Co3+ Oh of MnCo2 O4 with the optimal charge structure allows a more suitable binding interaction between the active center and the oxygenated species, resulting in superior oxygen electrocatalytic performance.

18.
ACS Appl Mater Interfaces ; 13(42): 50524-50530, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641668

RESUMEN

Molybdenum carbide and nitride nanocrystals have been widely recognized as ideal electrocatalyst materials for water splitting. Furthermore, the interfacial engineering strategy can effectively tune their physical and chemical properties to improve performance. Herein, we produced N-doped molybdenum carbide nanosheets on carbonized melamine (N-doped Mo2C@CN) and 3D hollow Mo2C-Mo2N nanostructures (3D H-Mo2C-Mo2N) with tuneable interfacial properties via high-temperature treatment. X-ray photoelectron spectroscopy reveals that Mo2C and Mo2N nanocrystals in 3D hollow nanostructures are chemically bonded with each other and produce stable heterostructures. The 3D H-Mo2C-Mo2N nanostructures demonstrate lower onset potential and overpotential at a current density of 10 mV cm-2 than the N-doped Mo2C@CN nanostructure due to its higher active sites and improved interfacial charge transfer. The current work presents a strategy to tune metal carbide/nitride nanostructures and interfacial properties for the production of high-performance energy materials.

19.
ACS Cent Sci ; 7(4): 671-680, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-34056097

RESUMEN

Thin-film composite (TFC) polymeric membranes have attracted increasing interest to meet the demands of industrial gas separation. However, the development of high-performance TFC membranes within their current configuration faces two key challenges: (i) the thickness-dependent gas permeability of polymeric materials (mainly poly(dimethylsiloxane) (PDMS)) and (ii) the geometric restriction effect due to the limited pore accessibility of the underlying porous substrate. Here we demonstrate that the incorporation of trace amounts (∼1.8 wt %) of amorphous metal-organic framework (MOF) nanosheets into the gutter layer of TFC assemblies can simultaneously address these two limitations by the creation of rapid, transmembrane gas diffusion pathways. The resultant PDMS&MOF membrane displayed excellent CO2 permeance of 10450 GPU and CO2/N2 selectivity of 9.1. Leveraging this strategy, we successfully fabricate a novel TFC membrane, consisting of a PDMS&MOF gutter and an ultrathin (∼54 nm) poly(ethylene glycol) top selective layer via surface-initiated atom transfer radical polymerization. The complete TFC membrane exhibits excellent processability and remarkable CO2/N2 separation performance (1990 GPU with a CO2/N2 ideal selectivity of 39). This study reveals a strategy for the design and fabrication of a new TFC membrane system with unprecedented gas-separation performance.

20.
Environ Res ; 192: 110261, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32997967

RESUMEN

The question of how to reasonably dispose and recycle antibiotic mycelial residues (AMRs), a hazardous waste, is a critical issue. The AMRs containing nitrogen-rich organic matters shows a promising alternative feedstock of nitrogen-doped porous carbons (NPCs). Here, the NPCs with the ultrahigh surface area (2574.9 m2 g-1) were prepared by using the discarded oxytetracycline mycelial residues (OMRs) and further used as an electrode for supercapacitor. A series of experiments including scanning/transmission electron microscope, Brunauer-Emmett-Teller measurement, and electrochemical impedance spectrum revealed that the NPC-2-900 exhibited a high N content, large surface area, and high electrical conductivity. The electrochemical performance of the NPC was tested by cyclic voltammetry, galvanostatic charge/discharge cycling, and rate capability test. The optimized NPC-2-900 displayed distinguish specific capacitance (307 F g-1), cycling stability (over 95% capacitance retention after 2000 cycles even at a high current density of 20 A g-1) and superior rate performance. Of particular interest, the qPCR test indicates the ARGs were reduced in the conversion process from OMRs to NPCs.


Asunto(s)
Carbono , Nitrógeno , Antibacterianos , Farmacorresistencia Microbiana , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA