Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
ACS Synth Biol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092670

RESUMEN

Collagen II (COL2) is the major component of cartilage tissue and is widely applied in pharmaceuticals, food, and cosmetics. In this study, COL fragments were extracted from human COL2 for secretory expression in Pichia pastoris. Three variants were successfully secreted by shake flask cultivation with a yield of 73.3-100.7 mg/L. The three COL2 variants were shown to self-assemble into triple-helix at 4 °C and capable of forming higher order assembly of nanofiber and hydrogel. The bioactivities of the COL2 variants were validated, showing that sample 205 exhibited the best performance for inducing fibroblast differentiation and cell migration. Meanwhile, sample 205 and 209 exhibited higher capacity for inducing in vitro blood clotting than commercial mouse COL1. To overexpress sample 205, the expression cassettes were constructed with different promoters and signal peptides, and the fermentation condition was optimized, obtaining a yield of 172 mg/L for sample 205. Fed-batch fermentation was carried out using a 5 L bioreactor, and the secretory protease Pep4 was knocked out to avoid sample degradation, finally obtaining a yield of 3.04 g/L. Here, a bioactive COL2 fragment was successfully identified and can be overexpressed in P. pastoris; the variant may become a potential biomaterial for skin care.

2.
Anesth Analg ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058621

RESUMEN

BACKGROUND: Sugammadex is a neuromuscular blockade (NMB) reversal agent introduced in the United States in 2016, which allows the reversal of deep NMB, not possible with neostigmine. Few data describe associated practice changes, if any, in NMB medication use that may have resulted from its availability. We hypothesized that after institutional introduction, use of NMB agents increased. Furthermore, as NMB medication is typically used when the airway has been secured with an endotracheal tube (ETT), we speculated that ETT use may have also increased over the same time period as a result of sugammadex availability. METHODS: This was a single-center cross-sectional study of patients ages 2 to 17 years undergoing general anesthesia for surgical cases where anesthesia providers often have discretion over NMB medication use or whether to use an ETT versus a laryngeal mask airway (LMA), comparing the time periods 2014 to 2016 (presugammadex) to 2017 to 2019 (early sugammadex) and 2020 to 2022 (established sugammadex). Outcomes included use of (1) any nondepolarizing NMB medication during the case and (2) an ETT versus LMA. We used generalized linear mixed models to examine changes in practice patterns over time. We also examined whether patient age group and in-room provider (resident versus certified registered nurse anesthetist [CRNA]) were associated with increased NMB medication or ETT use. RESULTS: There were 25,638 eligible anesthetics. Patient and surgical characteristics were similar across time periods. In adjusted analyses, the odds of NMB medication use increased from 2017 to 2019 (odds ratio [OR], 1.55, 95% confidence interval [CI], 1.38-1.75) and 2020 to 2022 (OR, 5.62, 95% CI, 4.96-6.37) relative to 2014 to 2016, and were higher in older children (age 6-11 years vs 2-5 years OR, 1.81, 95% CI, 1.63-2.01; age 12-17 years vs 2-5 years OR, 7.01, 95% CI, 6.19-7.92) and when the primary in-room provider was a resident rather than a CRNA (OR, 1.24, 95% CI, 1.12-1.37). The odds of ETT use declined 2017 to 2019 (OR, 0.69, 95% CI, 0.63-0.75) and 2020 to 2022 (OR, 0.71, 95% CI, 0.65-0.78), more so in older children (age 6-11 years vs 2-5 years OR, 0.45, 95% CI, 0.42-0.49; age 12-17 years vs 2-5 years OR, 0.28, 95% CI, 0.25-0.31). Resident presence at induction was associated with increased odds of ETT use (OR, 1.50, 95% CI, 1.38-1.62). CONCLUSIONS: The decision to use NMB medication as part of an anesthetic plan increased substantially after sugammadex became available, particularly in older children and cases staffed by residents. ETT use declined over the study period.

3.
J Am Chem Soc ; 146(29): 19673-19679, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39008121

RESUMEN

Hemoproteins have recently emerged as powerful biocatalysts for new-to-nature carbene transfer reactions. Despite this progress, these strategies have remained largely limited to diazo-based carbene precursor reagents. Here, we report the development of a biocatalytic strategy for the stereoselective construction of pyridine-functionalized cyclopropanes via the hemoprotein-mediated activation of pyridotriazoles (PyTz) as stable and readily accessible carbene sources. This method enables the asymmetric cyclopropanation of a variety of olefins, including electron-rich and electrodeficient ones, with high activity, high stereoselectivity, and enantiodivergent selectivity, providing access to mono- and diarylcyclopropanes that incorporate a pyridine moiety and thus two structural motifs of high value in medicinal chemistry. Mechanistic studies reveal a multifaceted role of 7-halogen substitution in the pyridotriazole reagent toward favoring multiple catalytic steps in the transformation. This work provides the first example of asymmetric olefin cyclopropanation with pyridotriazoles, paving the way to the exploitation of these attractive and versatile reagents for enzyme-catalyzed carbene-mediated reactions.


Asunto(s)
Ciclopropanos , Triazoles , Ciclopropanos/química , Ciclopropanos/síntesis química , Triazoles/química , Triazoles/síntesis química , Estereoisomerismo , Piridinas/química , Piridinas/síntesis química , Estructura Molecular , Biocatálisis
4.
Food Chem X ; 23: 101581, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39040151

RESUMEN

The aroma profile of fermented chili pepper was analyzed using gas chromatography-mass spectrometry (GC-MS) coupled with chromatography-olfactometry (GC-O). A total of 19 aroma-active compounds were detected, exhibiting aroma intensities spanning from 1.8 to 4.2. And 12 aroma-active compounds were determined as pivotal odorants through odor activity value (OAV) calculation. Concentrations of these aroma-active compounds were quantified and subsequently employed in reconstructing the aroma profile of fermented chili pepper. Quantitative descriptive sensory analysis and electronic nose analysis proved that the aroma profile of fermented chili pepper was basically reconstituted. Omission experiments confirmed that methyl salicylate, linalool, 2-methoxy-3-isobutylpyrazine, and phenylethyl alcohol were the key aroma-active compounds of fermented chili pepper. Moreover, the perceptual interactions between the key aroma-active compounds were investigated. It was found that methyl salicylate masked the floral aroma, while phenylethyl alcohol had an additive effect on the aroma of linalool and 2-methoxy-3-isobutylpyrazine.

5.
Front Nutr ; 11: 1429242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006102

RESUMEN

Introduction: Sarcopenia, an age-related disease, has become a major public health concern, threatening muscle health and daily functioning in older adults around the world. Changes in the gut microbiota can affect skeletal muscle metabolism, but the exact association is unclear. The richness of gut microbiota refers to the number of different species in a sample, while diversity not only considers the number of species but also the evenness of their abundances. Alpha diversity is a comprehensive metric that measures both the number of different species (richness) and the evenness of their abundances, thereby providing a thorough understanding of the species composition and structure of a community. Methods: This meta-analysis explored the differences in intestinal microbiota diversity and richness between populations with sarcopenia and non-sarcopenia based on 16 s rRNA gene sequencing and identified new targets for the prevention and treatment of sarcopenia. PubMed, Embase, Web of Science, and Google Scholar databases were searched for cross-sectional studies on the differences in gut microbiota between sarcopenia and non-sarcopenia published from 1995 to September 2023 scale and funnel plot analysis assessed the risk of bias, and performed a meta-analysis with State v.15. 1. Results: A total of 17 randomized controlled studies were included, involving 4,307 participants aged 43 to 87 years. The alpha diversity of intestinal flora in the sarcopenia group was significantly reduced compared to the non-sarcopenia group: At the richness level, the proportion of Actinobacteria and Fusobacteria decreased, although there was no significant change in other phyla. At the genus level, the abundance of f-Ruminococcaceae; g-Faecalibacterium, g-Prevotella, Lachnoclostridium, and other genera decreased, whereas the abundance of g-Bacteroides, Parabacteroides, and Shigella increased. Discussion: This study showed that the richness of the gut microbiota decreased with age in patients with sarcopenia. Furthermore, the relative abundance of different microbiota changed related to age, comorbidity, participation in protein metabolism, and other factors. This study provides new ideas for targeting the gut microbiota for the prevention and treatment of sarcopenia. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=475887, CRD475887.

6.
Langmuir ; 40(28): 14334-14345, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38958290

RESUMEN

Carbon dioxide (CO2) has been widely used to enhance the recovery of adsorbed hydrocarbons from the organic matter (OM) in shale formations. To reveal the driving force of replacing adsorbed hydrocarbons from OM by CO2, we performed molecular dynamics (MD) simulations of the replacement process and calculated the interaction forces between CO2 and hydrocarbons. In addition, based on the umbrella sampling method, steered MD simulations were performed, and the free energy profiles of hydrocarbons were obtained using the weighted histogram analysis method. Results show that the condition of the hydrocarbon replacement by CO2 requires the hydrocarbon to have sufficient kinetic energy or to have a sufficiently large attractive force exerted to ensure that the hydrocarbon escapes the potential well of the OM. The attractive forces exerted on hydrocarbon molecules by CO2 can significantly decrease the energy barrier associated with hydrocarbon movement away from the OM surface. Furthermore, both CO2 and supercritical CO2 can effectively displace adsorbed hydrocarbon gas (methane) on the OM, while supercritical CO2 is required to enhance the recovery of adsorbed hydrocarbon oil (n-dodecane). The results obtained in this study provide guidance for enhancing the recovery of adsorbed hydrocarbons by CO2 in shale formations.

7.
J Nat Prod ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033406

RESUMEN

Nine new oligophenalenone dimers, adpressins A-G (1-9), together with nine known compounds (10-18), were isolated from the fungus Talaromyces adpressus. Their chemical structures were determined on the basis of spectroscopic and mass spectral analyses. Their relative and absolute configurations were identified by 1H and 13C NMR calculations followed by DP4+ analyses, electronic circular dichroism (ECD) calculations, and ECD spectra comparison with related compounds. Compound 1 is the first example of a duclauxin derivative featuring an unusual 6/6/6/5/6/6/6 ring system, while compounds 6 and 7 contained a novel pyrrolidine ring. Compounds 5, 9, and 18 exhibited moderate inhibition against LPS-induced B lymphocyte proliferation with IC50 values ranging from 1.6 to 8.6 µM. Additionally, compounds 9 and 18 exhibited moderate inhibition against Con A-induced T lymphocyte proliferation with IC50 values of 9.3 and 2.6 µM, respectively.

8.
Front Microbiol ; 15: 1402963, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903798

RESUMEN

Based on the whole virus or spike protein of pigs, δ coronavirus (PDCoV) as an immunogen may have unrelated antigenic epitope interference. Therefore, it is essential for screening and identifying advantageous protective antigen epitopes. In addition, immunoinformatic tools are described as an important aid in determining protective antigenic epitopes. In this study, the primary, secondary, and tertiary structures of vaccines were measured using ExPASy, PSIPRED 4.0, and trRosetta servers. Meanwhile, the molecular docking analysis and vector of the candidate nanovaccine were constructed. The immune response of the candidate vaccine was simulated and predicted using the C-ImmSim server. This experiment screened B cell epitopes with strong immunogenicity and high conservation, CTL epitopes, and Th epitopes with IFN-γ and IL-4 positive spike proteins. Ferritin is used as a self-assembled nanoparticle element for designing candidate nanovaccine. After analysis, it has been found to be soluble, stable, non-allergenic, and has a high affinity for its target receptor, TLR-3. The preliminary simulation analysis results show that the candidate nanovaccine has the ability to induce a humoral and cellular immune response. Therefore, it may provide a new theoretical basis for research on coronavirus self-assembled nanovaccines. It may be an effective candidate vaccine for controlling and preventing PDCoV.

9.
Synth Syst Biotechnol ; 9(4): 733-741, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38911060

RESUMEN

Collagen XVII (COL17) is a transmembrane protein that mediates skin homeostasis. Due to expression of full length collagen was hard to achieve in microorganisms, arising the needs for selection of collagen fragments with desired functions for microbial biosynthesis. Here, COL17 fragments (27-33 amino acids) were extracted and replicated 16 times for recombinant expression in Escherichia coli. Five variants were soluble expressed, with the highest yield of 223 mg/L. The fusion tag was removed for biochemical and biophysical characterization. Circular dichroism results suggested one variant (sample-1707) with a triple-helix structure at >37 °C. Sample-1707 can assemble into nanofiber (width, 5.6 nm) and form hydrogel at 3 mg/mL. Sample-1707 was shown to induce blood clotting and promote osteoblast differentiation. Furthermore, sample-1707 exhibited high capacity to induce mouse hair follicle stem cells differentiation and osteoblast migration, demonstrating a high capacity to induce skin cell regeneration and promote wound healing. A strong hydrogel was prepared from a chitosan and sample-1707 complex with a swelling rate of >30 % higher than simply using chitosan. Fed-batch fermentation of sample-1707 with a 5-L bioreactor obtained a yield of 600 mg/L. These results support the large-scale production of sample-1707 as a biomaterial for use in the skin care industry.

10.
J Hazard Mater ; 474: 134821, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850927

RESUMEN

Butylparaben, a common preservative, is widely used in food, pharmaceuticals and personal care products. Epidemiological studies have revealed the close relationship between butylparaben and diabetes; however the mechanisms of action remain unclear. In this study, we administered butylparaben orally to mice and observed that exposure to butylparaben induced glucose intolerance and hyperlipidemia. RNA sequencing results demonstrated that the enrichment of differentially expressed genes was associated with lipid metabolism, bile acid metabolism, and inflammatory response. Western blot results further validated that butylparaben promoted hepatic lipogenesis, inflammation, gluconeogenesis, and insulin resistance through the inhibition of the farnesoid X receptor (FXR) pathway. The FXR agonists alleviated the butylparaben-induced metabolic disorders. Moreover, 16 S rRNA sequencing showed that butylparaben reduced the abundance of Bacteroidetes, S24-7, Lactobacillus, and Streptococcus, and elevated the Firmicutes/Bacteroidetes ratio. The gut microbiota dysbiosis caused by butylparaben led to decreased bile acids (BAs) production and increased inflammatory response, which further induced hepatic glycolipid metabolic disorders. Our results also demonstrated that probiotics attenuated butylparaben-induced disturbances of the gut microbiota and hepatic metabolism. Taken collectively, the findings reveal that butylparaben induced gut microbiota dysbiosis and decreased BAs production, which further inhibited FXR signaling, ultimately contributing to glycolipid metabolic disorders in the liver.


Asunto(s)
Microbioma Gastrointestinal , Parabenos , Receptores Citoplasmáticos y Nucleares , Transducción de Señal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Parabenos/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Glucolípidos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/metabolismo , Ratones , Disbiosis/inducido químicamente , Conservadores Farmacéuticos/toxicidad , Ácidos y Sales Biliares/metabolismo
11.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38836332

RESUMEN

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Asunto(s)
Nanotubos de Carbono , Triterpenos Pentacíclicos , Neumonía , Transducción de Señal , Triterpenos , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nanotubos de Carbono/toxicidad , FN-kappa B/metabolismo , Triterpenos Pentacíclicos/farmacología , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Neumonía/prevención & control , Neumonía/metabolismo , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología
12.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931767

RESUMEN

Fixed-wing UAVs have shown great potential in both military and civilian applications. However, achieving safe and collision-free flight in complex obstacle environments is still a challenging problem. This paper proposed a hierarchical two-layer fixed-wing UAV motion planning algorithm based on a global planner and a local reinforcement learning (RL) planner in the presence of static obstacles and other UAVs. Considering the kinematic constraints, a global planner is designed to provide reference guidance for ego-UAV with respect to static obstacles. On this basis, a local RL planner is designed to accomplish kino-dynamic feasible and collision-free motion planning that incorporates dynamic obstacles within the sensing range. Finally, in the simulation training phase, a multi-stage, multi-scenario training strategy is adopted, and the simulation experimental results show that the performance of the proposed algorithm is significantly better than that of the baseline method.

13.
Microb Cell Fact ; 23(1): 186, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943174

RESUMEN

BACKGROUND: Oritavancin is a new generation of semi-synthetic glycopeptide antibiotics against Gram-positive bacteria, which served as the first and only antibiotic with a single-dose therapeutic regimen to treat ABSSSI. A naturally occurring glycopeptide A82846B is the direct precursor of oritavancin. However, its application has been hampered by low yields and homologous impurities. This study established a multi-step combinatorial strategy to rationally construct a high-quality and high-efficiency biosynthesis system for A82846B and systematically optimize its fermentation process to break through the bottleneck of microbial fermentation production. RESULTS: Firstly, based on the genome sequencing and analysis, we deleted putative competitive pathways and constructed a better A82846B-producing strain with a cleaner metabolic background, increasing A82846B production from 92 to 174 mg/L. Subsequently, the PhiC31 integrase system was introduced based on the CRISPR-Cas12a system. Then, the fermentation level of A82846B was improved to 226 mg/L by over-expressing the pathway-specific regulator StrR via the constructed PhiC31 system. Furthermore, overexpressing glycosyl-synthesis gene evaE enhanced the production to 332 mg/L due to the great conversion of the intermediate to target product. Finally, the scale-up production of A82846B reached 725 mg/L in a 15 L fermenter under fermentation optimization, which is the highest reported yield of A82846B without the generation of homologous impurities. CONCLUSION: Under approaches including blocking competitive pathways, inserting site-specific recombination system, overexpressing regulator, overexpressing glycosyl-synthesis gene and optimizing fermentation process, a multi-step combinatorial strategy for the high-level production of A82846B was developed, constructing a high-producing strain AO-6. The combinatorial strategies employed here can be widely applied to improve the fermentation level of other microbial secondary metabolites, providing a reference for constructing an efficient microbial cell factory for high-value natural products.


Asunto(s)
Amycolatopsis , Fermentación , Ingeniería Metabólica , Amycolatopsis/metabolismo , Amycolatopsis/genética , Ingeniería Metabólica/métodos , Sistemas CRISPR-Cas , Antibacterianos/biosíntesis , Vías Biosintéticas , Glicopéptidos/biosíntesis
14.
ACS Appl Mater Interfaces ; 16(27): 34524-34537, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38926154

RESUMEN

In recent years, the study of microplastics (MPs) and nanoplastics (NPs) and their effects on human health has gained significant attention. The impacts of NPs on lipid metabolism and the specific mechanisms involved remain poorly understood. To address this, we utilized high-throughput sequencing and molecular biology techniques to investigate how endoplasmic reticulum (ER) stress might affect hepatic lipid metabolism in the presence of polystyrene nanoplastics (PS-NPs). Our findings suggest that PS-NPs activate the PERK-ATF4 signaling pathway, which in turn upregulates the expression of genes related to lipid synthesis via the ATF4-PPARγ/SREBP-1 pathway. This activation leads to an abnormal accumulation of lipid droplets in the liver. 4-PBA, a known ER stress inhibitor, was found to mitigate the PS-NPs-induced lipid metabolism disorder. These results demonstrate the hepatotoxic effects of PS-NPs and clarify the mechanisms of abnormal lipid metabolism induced by PS-NPs.


Asunto(s)
Factor de Transcripción Activador 4 , Poliestirenos , Transducción de Señal , eIF-2 Quinasa , Poliestirenos/química , Poliestirenos/toxicidad , Poliestirenos/farmacología , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Animales , Ratones , Transducción de Señal/efectos de los fármacos , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/inducido químicamente , Trastornos del Metabolismo de los Lípidos/tratamiento farmacológico , Nanopartículas/química , Nanopartículas/toxicidad , Microplásticos/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL
15.
Nanomaterials (Basel) ; 14(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786811

RESUMEN

Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection.

17.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612872

RESUMEN

Recently, studies have reported a correlation that individuals with diabetes show an increased risk of developing Alzheimer's disease (AD). Mulberry leaves, serving as both a traditional medicinal herb and a food source, exhibit significant hypoglycemic and antioxidative properties. The flavonoid compounds in mulberry leaf offer therapeutic effects for relieving diabetic symptoms and providing neuroprotection. However, the mechanisms of this effect have not been fully elucidated. This investigation aimed to investigate the combined effects of specific mulberry leaf flavonoids (kaempferol, quercetin, rhamnocitrin, tetramethoxyluteolin, and norartocarpetin) on both type 2 diabetes mellitus (T2DM) and AD. Additionally, the role of the gut microbiota in these two diseases' treatment was studied. Using network pharmacology, we investigated the potential mechanisms of flavonoids in mulberry leaves, combined with gut microbiota, in combating AD and T2DM. In addition, we identified protein tyrosine phosphatase 1B (PTP1B) as a key target for kaempferol in these two diseases. Molecular docking and molecular dynamics simulations showed that kaempferol has the potential to inhibit PTP1B for indirect treatment of AD, which was proven by measuring the IC50 of kaempferol (279.23 µM). The cell experiment also confirmed the dose-dependent effect of kaempferol on the phosphorylation of total cellular protein in HepG2 cells. This research supports the concept of food-medicine homology and broadens the range of medical treatments for diabetes and AD, highlighting the prospect of integrating traditional herbal remedies with modern medical research.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Morus , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Quempferoles , Simulación de Dinámica Molecular , Farmacología en Red , Enfermedad de Alzheimer/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Frutas , Flavonoides
18.
Biol Reprod ; 111(1): 28-42, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38438135

RESUMEN

Preimplantation embryos undergo a series of important biological events, including epigenetic reprogramming and lineage differentiation, and the key genes and specific mechanisms that regulate these events are critical to reproductive success. Ubiquitin-specific protease 7 (USP7) is a deubiquitinase involved in the regulation of a variety of cellular functions, yet its precise function and mechanism in preimplantation embryonic development remain unknown. Our results showed that RNAi-mediated silencing of USP7 in mouse embryos or treatment with P5091, a small molecule inhibitor of USP7, significantly reduced blastocyst rate and blastocyst quality, and decreased total and trophectoderm cell numbers per blastocyst, as well as destroyed normal lineage differentiation. The results of single-cell RNA-seq, reverse transcription-quantitative polymerase chain reaction, western blot, and immunofluorescence staining indicated that interference with USP7 caused failure of the morula-to-blastocyst transition and was accompanied by abnormal expression of key genes (Cdx2, Oct4, Nanog, Sox2) for lineage differentiation, decreased transcript levels, increased global DNA methylation, elevated repressive histone marks (H3K27me3), and decreased active histone marks (H3K4me3 and H3K27ac). Notably, USP7 may regulate the transition from the morula to blastocyst by stabilizing the target protein YAP through the ubiquitin-proteasome pathway. In conclusion, our results suggest that USP7 may play a crucial role in preimplantation embryonic development by regulating lineage differentiation and key epigenetic modifications.


Asunto(s)
Blastocisto , Diferenciación Celular , Peptidasa Específica de Ubiquitina 7 , Animales , Ratones , Blastocisto/metabolismo , Blastocisto/efectos de los fármacos , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Diferenciación Celular/efectos de los fármacos , Femenino , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Linaje de la Célula
19.
Thromb Res ; 237: 52-63, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547695

RESUMEN

The presence of neutrophil extracellular traps (NETs) in thrombotic diseases has been extensively studied. The exact mechanism of NET formation in deep venous thrombosis (DVT) has not been largely studied. This study is aimed to explore the role of NETs and their interaction with platelet factor 4 (PF4) in DVT. In plasma samples from 51 healthy volunteers and 52 DVT patients, NET markers and PF4 were measured using enzyme-linked immunosorbent assays (ELISA). NET generation in blood samples from healthy subjects and DVT patients was analyzed by confocal microscopy and flow cytometry. The plasma levels of NETs were significantly elevated in DVT patients, and neutrophils from patients showed a stronger ability to generate NETs after treatment. PF4 was upregulated in plasma samples from DVT patients and mediated NET formation. NETs enhanced procoagulant (PCA) via tissue factor and activating platelets to induce procoagulant activity. In addition, we established an inferior vena cava ligation (IVC) model to examine the role of NETs in thrombogenicity in DVT. In conclusion, NET formation was mediated by PF4 and enhance the procoagulant activity in DVT.


Asunto(s)
Trampas Extracelulares , Factor Plaquetario 4 , Trombosis de la Vena , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Plaquetas/metabolismo , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Factor Plaquetario 4/sangre , Factor Plaquetario 4/metabolismo , Trombosis de la Vena/sangre , Trombosis de la Vena/patología
20.
Phytomedicine ; 128: 155439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537438

RESUMEN

BACKGROUND: Chronic liver injury (CLI) is a complex condition that requires effective therapeutic interventions. The Yi-Shan-Hong (YSH) formula is an empirically derived remedy that has shown effectiveness and safety in the management of chronic liver damage. However, the bioactive components and multifaceted mechanisms of YSH remain inadequately understood. PURPOSE: To examine the bioactive compounds and functional processes that contribute to the therapeutic benefits of YSH against CLI. METHODS: Serum pharmacochemistry and network pharmacology were employed to identify active compounds and possible targets of YSH in CLI. In addition, YSH was also given in three doses to d-(+)-galactosamine hydrochloride (D-GalN) -induced CLI rats to test its therapeutic efficacy. RESULTS: The analysis of serum samples successfully detected 25 compounds from YSH. Searches on the databases resulted in 277 genes as being correlated with chemicals in YSH, and 397 genes associated with CLI. In vivo experiments revealed that YSH displayed a notable therapeutic impact on liver injury caused by d-GalN. This was evidenced by enhanced liver function and histopathological improvements, reduced oxidative stress response, proinflammatory factors, and fibrosis levels. Importantly, no discernible adverse effects were observed. Furthermore, the administration of YSH treatment reversed the activation of AKT phosphorylation caused by d-GalN, aligning with the findings of the network pharmacology study. CONCLUSION: These findings provide preclinical evidence of YSH's therapeutic value in CLI and highlight its hepatoprotective action via the PI3K/AKT signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Hígado , Farmacología en Red , Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Medicamentos Herbarios Chinos/farmacología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Hígado/efectos de los fármacos , Galactosamina , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA