Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phytopathology ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102501

RESUMEN

The bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is the most devastating disease threaten-ing the global kiwifruit production. This pathogen delivers multiple effector proteins into plant cells to resist plant immune re-sponses and facilitate their survival. Here, we focused on the unique effector HopZ5 in Psa, which previously has been reported to have virulence functions. In this study, our results showed that HopZ5 could cause macroscopic cell death and trigger a serious immune response by agroinfiltration in Nicotiana benthamiana, along with up-regulated expression of immunity-related genes and significant accumulation of reactive oxygen species and callose. Subsequently, we confirmed that HopZ5 interacted with the phosphoserine-binding protein, GF14C, in both the nonhost plant N. benthamiana (NbGF14C) and the host plant kiwifruit (AcGF14C), and silencing of NbGF14C compromised HopZ5-mediated cell death, suggesting GF14C played a crucial role in the detection of HopZ5. Further studies showed that overexpression of NbGF14C both markedly reduced the infection of Sclerotinia sclerotiorum and Phytophthora capsica in N. benthamiana and overexpression of AcGF14C significantly enhanced the re-sistance of kiwifruit against Psa, indicating that GF14C positively regulates plant immunity. Collectively, our results revealed that the virulence effector HopZ5 could be recognized by plants and interact with GF14C to activate plant immunity.

2.
Adv Sci (Weinh) ; : e2400229, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973266

RESUMEN

Inflammatory responses play a central role in coordinating biomaterial-mediated tissue regeneration. However, precise modulation of dynamic variations in microenvironmental inflammation post-implantation remains challenging. In this study, the traditional ß-tricalcium phosphate-based scaffold is remodeled via ultrathin MXene-Ti3C2 decoration and Zn2+/Sr2+ ion-substitution, endowing the scaffold with excellent reactive oxygen species-scavenging ability, near-infrared responsivity, and enhanced mechanical properties. The induction of mild hyperthermia around the implant via periodic near-infrared irradiation facilitates spatiotemporal regulation of inflammatory cytokines secreted by a spectrum of macrophage phenotypes. The process initially amplifies the pro-inflammatory response, then accelerates M1-to-M2 macrophage polarization transition, yielding a satisfactory pattern of osteo-immunomodulation during the natural bone healing process. Later, sustained release of Zn2+/Sr2+ ions with gradual degradation of the 3D scaffold maintains the favorable reparative M2-dominated immunological microenvironment that supports new bone mineralization. Precise temporal immunoregulation of the bone healing process by the intelligent 3D scaffold enhances bone regeneration in a rat cranial defect model. This strategy paves the way for the application of ß-tricalcium phosphate-based materials to guide the dynamic inflammatory and bone tissue responses toward a favorable outcome, making clinical treatment more predictable and durable. The findings also demonstrate that near-infrared irradiation-derived mild hyperthermia is a promising method of immunomodulation.

3.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982358

RESUMEN

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Asunto(s)
Alternaria , Endófitos , Enfermedades de las Plantas , Hojas de la Planta , Solanum tuberosum , Talaromyces , Alternaria/crecimiento & desarrollo , Alternaria/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Solanum tuberosum/microbiología , Talaromyces/genética , Talaromyces/crecimiento & desarrollo , Endófitos/fisiología , Endófitos/aislamiento & purificación , Endófitos/genética , Hojas de la Planta/microbiología , Hifa/crecimiento & desarrollo , Antibiosis , Quitinasas/metabolismo , Agentes de Control Biológico , Control Biológico de Vectores/métodos
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124837, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39059260

RESUMEN

To further reveal the interaction mechanism between plants and pathogens, this study used confocal Raman microscopy spectroscopy (CRM) combined with chemometrics to visualize the biopolymers distribution of kiwifruit cell walls at different infection stages at the cellular micro level. Simultaneously, the changes in the content of various monosaccharides in fruit were studied at the molecular level using high-performance liquid chromatography (HPLC). There were significant differences in the composition of various nutrient components in the cell wall structure of kiwifruit at different infection times after infection by Botryosphaeria dothidea. PCA could cluster samples with infection time of 0-9 d into different infection stages, and SVM was used to predict the PCA classification results, the accuracy >96 %. Multivariate curve resolution-alternating least squares (MCR-ALS) helped to identify single substance spectra and concentration signals from mixed spectral signals. The pure substance chemical imaging maps of low methylated pectin (LMP), high methylated pectin (HMP), cellulose, hemicellulose, and lignin were obtained by analyzing the resolved concentration data. The imaging results showed that the lignin content in the kiwifruit cell wall increased significantly to resist pathogens infection after the infection of B. dothidea. With the development of infection, B. dothidea decomposed various substances in the host cell walls, allowing them to penetrate the interior of fruit cells. This caused significant changes in the form, structure, and distribution of various chemicals on the fruit cell walls in time and space. HPLC showed that glucose was the main carbon source and energy substance obtained by pathogens from kiwifruit during infection. The contents of galactose and arabinose, which maintained the structure and function of the fruit cell walls, decreased significantly and the cell wall structure was destroyed in the late stage of pathogens infection. This study provided a new perspective on the cellular structure changes caused by pathogenic infection of fruit and the defense response process of fruit and provided effective references for further research on the mechanisms of host-pathogen interactions in fruit infected by pathogens.

5.
Int J Biol Macromol ; 272(Pt 2): 132933, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862322

RESUMEN

Quaternary-ammonium chitosan (CT-CTA) is a popular water treatment agent, and its electropositivity and cation strength are improved compared with chitosan. The use of CT-CTA is widely advocated to remove suspended particles and organic matter from wastewater. However, the solubility of CT-CTA is an important factor affecting the performance of CT-CTA, which is a neglected problem in previous studies. In the study, CT-CTA with different solubilities were prepared by adjusting pH from 2 to 7 in preparation, and their applications were explored in wastewater. When the pH was 2, 2.5, or 3, the obtained CT-CTA was a dissolved state. The turbidity and color removal were 95 % - 98 % and 60 % - 74 %, respectively. When the pH was 4, 5, 6, or 7, the obtained CT-CTA was a solid state. The turbidity and color removal were 30 % - 63 % and 90 % - 97 %, respectively. For domestic-wastewater treatment, CT-CTA in a dissolved state removed 92 % of turbidity and 50 % of chemical oxygen demand (COD). CT-CTA in a solid state removed 86 % of turbidity and 64 % of COD with poly aluminum chloride (PAC). The results illustrated the performance of CT-CTA with different solubilities, which can broaden its application in wastewater treatment.


Asunto(s)
Quitosano , Solubilidad , Aguas Residuales , Purificación del Agua , Quitosano/química , Aguas Residuales/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Compuestos de Amonio Cuaternario/química , Análisis de la Demanda Biológica de Oxígeno , Contaminantes Químicos del Agua/química
6.
J Nanobiotechnology ; 22(1): 325, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858695

RESUMEN

BACKGROUND: Osteoarthritis (OA) is an aging-related degenerative joint disorder marked by joint discomfort and rigidity. Senescent chondrocytes release pro-inflammatory cytokines and extracellular matrix-degrading proteins, creating an inflammatory microenvironment that hinders chondrogenesis and accelerates matrix degradation. Targeting of senescent chondrocytes may be a promising approach for the treatment of OA. Herein, we describe the engineering of an injectable peptide-hydrogel conjugating a stem cell-homing peptide PFSSTKT for carrying plasmid DNA-laden nanoparticles and Tanshinon IIA (pPNP + TIIA@PFS) that was designed to attenuate OA progression by improving the senescent microenvironment and fostering cartilage regeneration. RESULTS: Specifically, pPNP + TIIA@PFS elevates the concentration of the anti-aging protein Klotho and blocks the transmission of senescence signals to adjacent healthy chondrocytes, significantly mitigating chondrocyte senescence and enhancing cartilage integrity. Additionally, pPNP + TIIA@PFS recruit bone mesenchymal stem cells and directs their subsequent differentiation into chondrocytes, achieving satisfactory chondrogenesis. In surgically induced OA model rats, the application of pPNP + TIIA@PFS results in reduced osteophyte formation and attenuation of articular cartilage degeneration. CONCLUSIONS: Overall, this study introduces a novel approach for the alleviation of OA progression, offering a foundation for potential clinical translation in OA therapy.


Asunto(s)
Condrocitos , Condrogénesis , Glucuronidasa , Hidrogeles , Proteínas Klotho , Células Madre Mesenquimatosas , Osteoartritis , Plásmidos , Ratas Sprague-Dawley , Animales , Osteoartritis/terapia , Osteoartritis/tratamiento farmacológico , Hidrogeles/química , Ratas , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Glucuronidasa/metabolismo , Glucuronidasa/farmacología , Condrogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Masculino , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Progresión de la Enfermedad , Nanopartículas/química , Humanos , ADN , Senescencia Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
7.
ACS Appl Mater Interfaces ; 16(23): 29805-29822, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830200

RESUMEN

Periprosthetic osteolysis induced by the ultrahigh-molecular-weight polyethylene (UHMWPE) wear particles is a major complication associated with the sustained service of artificial joint prostheses and often necessitates revision surgery. Therefore, a smart implant with direct prevention and repair abilities is urgently developed to avoid painful revision surgery. Herein, we fabricate a phosphatidylserine- and polyethylenimine-engineered niobium carbide (Nb2C) MXenzyme-coated micro/nanostructured titanium implant (PPN@MNTi) that inhibits UHMWPE particle-induced periprosthetic osteolysis. The specific mechanism by which PPN@MNTi operates involves the bioresponsive release of nanosheets from the MNTi substrate within an osteolysis microenvironment, initiated by the cleavage of a thioketal-dopamine molecule sensitive to reactive oxygen species (ROS). Subsequently, functionalized Nb2C MXenzyme could target macrophages and escape from lysosomes, effectively scavenging intracellular ROS through its antioxidant nanozyme-mimicking activities. This further achieves the suppression of osteoclastogenesis by inhibiting NF-κB/MAPK and autophagy signaling pathways. Simultaneously, based on the synergistic effect of MXenzyme-integrated coatings and micro/nanostructured topography, the designed implant promotes the osteogenic differentiation of bone mesenchymal stem cells to regulate bone homeostasis, further achieving advanced osseointegration and alleviable periprosthetic osteolysis in vivo. This study provides a precise prevention and repair strategy of periprosthetic osteolysis, offering a paradigm for the development of smart orthopedic implants.


Asunto(s)
Niobio , Osteogénesis , Osteólisis , Osteogénesis/efectos de los fármacos , Osteólisis/patología , Osteólisis/prevención & control , Osteólisis/metabolismo , Niobio/química , Ratones , Animales , Polietilenos/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Titanio/química , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo
8.
Int J Biochem Cell Biol ; 173: 106613, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909746

RESUMEN

Vascular calcification in diabetes patients is a major independent risk factor for developing diabetic cardiovascular complications. However, the mechanisms by which diabetes leads to vascular calcification are complex and not yet fully understood. Our previous study revealed that miR-32-5p is a potential new diagnostic marker for coronary artery calcification. In this study, we found that miR-32-5p levels were significantly greater in the plasma of type 2 diabetes patients with coronary artery calcification and were positively correlated with the coronary artery calcification score. In type 2 diabetic mice, miR-32-5p levels were also elevated in the aorta, and knockout of miR-32-5p inhibited the osteogenic differentiation of vascular smooth muscle cells in vivo. Furthermore, overexpression of miR-32-5p promoted vascular smooth muscle cell calcification, while antagonism of miR-32-5p inhibited vascular smooth muscle cell calcification under high-glucose conditions. GATA binding protein 6 (GATA6) was identified as the key target gene through which miR-32-5p promotes vascular smooth muscle cell calcification. Overexpression of GATA6 antagonized the effects of miR-32-5p on vascular calcification. Additionally, high glucose levels were shown to induce the upregulation of miR-32-5p by activating CCAAT/enhancer binding protein beta (CEBPB). These results suggest that miR-32-5p is an important procalcification factor in vascular calcification associated with type 2 diabetes and identify the CEBPB/miR-32-5p/GATA6 axis as a potential biomarker and therapeutic target for preventing and treating vascular calcification in type 2 diabetes.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT , Diabetes Mellitus Tipo 2 , Factor de Transcripción GATA6 , MicroARNs , Calcificación Vascular , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/genética , Factor de Transcripción GATA6/metabolismo , Factor de Transcripción GATA6/genética , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Calcificación Vascular/genética
9.
Bioact Mater ; 38: 137-153, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38699244

RESUMEN

Enhancing the regeneration of cartilage defects remains challenging owing to limited innate self-healing as well as acute inflammation arising from the overexpression of reactive oxygen species (ROS) in post-traumatic microenvironments. Recently, stem cell-derived exosomes (Exos) have been developed as potential cell-free therapy for cartilage regeneration. Although this approach promotes chondrogenesis, it neglects the emerging inflammatory microenvironment. In this study, a smart bilayer-hydrogel dual-loaded with sodium diclofenac (DC), an anti-inflammatory drug, and Exos from bone marrow-derived mesenchymal stem cells was developed to mitigate initial-stage inflammation and promote late-stage stem-cell recruitment and chondrogenic differentiation. First, the upper-hydrogel composed of phenylboronic-acid-crosslinked polyvinyl alcohol degrades in response to elevated levels of ROS to release DC, which mitigates oxidative stress, thus reprogramming macrophages to the pro-healing state. Subsequently, Exos are slowly released from the lower-hydrogel composed of hyaluronic acid into an optimal microenvironment for the stimulation of chondrogenesis. Both in vitro and in vivo assays confirmed that the dual-loaded bilayer-hydrogel reduced post-traumatic inflammation and enhanced cartilage regeneration by effectively scavenging ROS and reprogramming macrophages. The proposed platform provides multi-staged therapy, which allows for the optimal harnessing of Exos as a therapeutic for cartilage regeneration.

10.
Dalton Trans ; 53(22): 9315-9322, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38747185

RESUMEN

The synthesis of a homochiral building block based on L-tartrate-chromium(III) complex anions is reported. The dinuclear complex anion, which contains two bridging L-tartrate ligands and one aromatic N-donor ligand coordinated to chromium(III) ions, exhibits a boat conformation in which intramolecular resonance-assisted hydrogen bonding is present. The sodium L-tartrate-chromium(III) compound with the formula Na[Cr2(bpy)2(L-tart)2H]·9H2O (1) crystallizes from a methanol-water solution as a high water content material in the monoclinic space group P2. The as-synthesized compound is only stable at high relative humidity and undergoes structural transformations during drying, which are accompanied by water loss. However, these transformations are reversible and upon wetting, the material returns to its high water content structure. Based on a combination of experimental techniques (PXRD, in situ ATR-FTIR and EPR spectroscopy), the structure of the complex anions appears to be insensitive to the humidity variable processes (wetting and drying). Due to the presence of several hydrogen acceptor and donor groups in the L-tartrate-chromium(III) complex anion, we investigated the proton transport properties of a sodium L-tartrate-chromium(III) compound by impedance spectroscopy under dry and wet conditions at different temperatures. Since the relative humidity affects the structural transformations in this system, it also has a large influence on the proton conductivity, which varies by up to four orders of magnitude depending on the degree of hydration. These results confirm that the proton conductivity can be tuned in flexible structures in which non-covalent interactions determine the crystal packing.

11.
Cell Death Differ ; 31(8): 1029-1043, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38762597

RESUMEN

Stress-adaptive mechanisms enabling cancer cells to survive under glucose deprivation remain elusive. N6-methyladenosine (m6A) modification plays important roles in determining cancer cell fate and cellular stress response to nutrient deficiency. However, whether m6A modification functions in the regulation of cancer cell survival under glucose deprivation is unknown. Here, we found that glucose deprivation reduced m6A modification levels. Increasing m6A modification resulted in increased hepatoma cell necrosis under glucose deprivation, whereas decreasing m6A modification had an opposite effect. Integrated m6A-seq and RNA-seq revealed potential targets of m6A modification under glucose deprivation, including the transcription factor FOSL1; further, glucose deprivation upregulated FOSL1 by inhibiting FOSL1 mRNA decay in an m6A-YTHDF2-dependent manner through reducing m6A modification in its exon1 and 5'-UTR regions. Functionally, FOSL1 protected hepatoma cells against glucose deprivation-induced necrosis in vitro and in vivo. Mechanistically, FOSL1 transcriptionally repressed ATF3 by binding to its promoter. Meanwhile, ATF3 and MAFF interacted via their leucine zipper domains to form a heterodimer, which competed with NRF2 for binding to antioxidant response elements in the promoters of NRF2 target genes, thereby inhibiting their transcription. Consequently, FOSL1 reduced the formation of the ATF3-MAFF heterodimer, thereby enhancing NRF2 transcriptional activity and the antioxidant capacity of glucose-deprived-hepatoma cells. Thus, FOSL1 alleviated the necrosis-inducing effect of glucose deprivation-induced reactive oxygen species accumulation. Collectively, our study uncovers the protective role of m6A-FOSL1-ATF3 axis in hepatoma cell necrosis under glucose deprivation, and may provide new targets for cancer therapy.


Asunto(s)
Carcinoma Hepatocelular , Glucosa , Neoplasias Hepáticas , Necrosis , Proteínas Proto-Oncogénicas c-fos , ARN Mensajero , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Glucosa/metabolismo , Glucosa/deficiencia , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Animales , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/genética , Línea Celular Tumoral , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Ratones Desnudos
12.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674959

RESUMEN

Biodegradable composite films comprising of poly(butylene adipate-co-terephthalate) (PBAT), polylactic acid (PLA), and tetrapod-zinc oxide (T-ZnO) whisker were prepared by a melt-extrusion and blow molding process. The effect of the incorporation of the T-ZnO whisker (1 to 7 wt.%) in the PBAT/PLA blend film was studied systematically. The composite films with an optimal T-ZnO whisker concentration of 3 wt.% exhibited the highest mechanical (tensile strength ~32 MPa), rheological (complex viscosity~1200 Pa.s at 1 rad/s angular frequency), and gas barrier (oxygen permeability~20 cc/m2·day) properties, whereas the composite films with 7 wt.% T-ZnO whiskers exhibited the highest antibacterial properties. The developed composite films can find potential application as antibacterial food packaging materials.

13.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G697-G711, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591127

RESUMEN

Sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) is a widely expressed membrane glycoprotein that acts as an important modulator of lipid metabolism and inflammatory stress. N-glycosylation of SCAP has been suggested to modulate cancer development, but its role in nonalcoholic steatohepatitis (NASH) is poorly understood. In this study, the N-glycosylation of SCAP was analyzed by using sequential trypsin proteolysis and glycosidase treatment. The liver cell lines expressing wild-type and N-glycosylation sites mutated SCAP were constructed to investigate the N-glycosylation role of SCAP in regulating inflammation and lipid accumulation as well as the underlying mechanisms. The hepatic SCAP protein levels were significantly increased in C57BL/6J mice fed with Western diet and sugar water (WD + SW) and diabetic db/db mice, which exhibited typical liver steatosis and inflammation accompanied with hyperglycemia. In vitro, the enhanced N-glycosylation by high glucose increased the protein stability of SCAP and hence increased its total protein levels, whereas the ablation of N-glycosylation significantly decreased SCAP protein stability and alleviated lipid accumulation and inflammation in hepatic cell lines. Mechanistically, SCAP N-glycosylation increased not only the SREBP-1-mediated acetyl-CoA synthetase 2 (ACSS2) transcription but also the AMPK-mediated S659 phosphorylation of ACCS2 protein, causing the enhanced ACSS2 levels in nucleus and hence increasing the histone H3K27 acetylation (H3K27ac), which is a key epigenetic modification associated with NASH. Modulating ACSS2 expression or its location in the nuclear abolished the effects of SCAP N-glycosylation on H3K27ac and lipid accumulation and inflammation. In conclusion, SCAP N-glycosylation aggravates inflammation and lipid accumulation through enhancing ACSS2-mediated H3K27ac in hepatocytes.NEW & NOTEWORTHY N-glycosylation of SCAP exacerbates inflammation and lipid accumulation in hepatocytes through ACSS2-mediated H3K27ac. Our data suggest that SCAP N-glycosylation plays a key role in regulating histone H3K27 acetylation and targeting SCAP N-glycosylation may be a new strategy for treating nonalcoholic steatohepatitis (NASH).


Asunto(s)
Histonas , Péptidos y Proteínas de Señalización Intracelular , Metabolismo de los Lípidos , Proteínas de la Membrana , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Glicosilación , Histonas/metabolismo , Acetilación , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Metabolismo de los Lípidos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Masculino , Humanos , Hígado/metabolismo , Hígado/patología
14.
Vet Microbiol ; 290: 110004, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281324

RESUMEN

Bovine viral diarrhea virus (BVDV) infection can result in typical peripheral blood lymphopenia and immune dysfunction. However, the molecular mechanism underlying the onset of lymphopenia remains unclear. B and T lymphocyte attenuator (BTLA) is a novel immune checkpoint molecule that primarily inhibits activation and proliferation of T cells. Blockade of BTLA with antibodies can boost the proliferation and anti-viral immune functions of T cells. Nonetheless, the immunomodulatory effects of BTLA in CD8+ T cells during BVDV infection remain unknown. Therefore, BTLA expression was measured in bovine peripheral blood CD8+ T cells infected with BVDV in vitro. Furthermore, the effects of BTLA or PD-1 blockade on CD8+ T cell activation, proliferation, and anti-viral immunological activities were investigated, as well as expression of signaling molecules downstream of BTLA, both alone and in combination. The results demonstrated that BTLA and PD-1 mRNA and protein levels were considerably increased in CD8+ T cells infected with cytopathic and non-cytopathic (NCP) BVDV. Surprisingly, as compared to blockade of either BTLA or PD-1, blockade of both dramatically increased proliferation and expression of CD25 and p-EKR of CD8+ T cells infected with NCP BVDV. Furthermore, blockade of BTLA, but not PD-1, had no effect on BVDV replication or IFN-γ expression. These findings confirmed the immunomodulatory roles of BTLA during BVDV infection, as well as the synergistic role of BTLA and PD-1 in NCP BVDV infection, thereby providing new insights to promote activation and the anti-viral immunological activities of CD8+ T cells.


Asunto(s)
Virus de la Diarrea Viral Bovina Tipo 1 , Virus de la Diarrea Viral Bovina , Linfopenia , Animales , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Linfopenia/veterinaria , Proliferación Celular
15.
Sci Data ; 10(1): 906, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104204

RESUMEN

Cities are at the heart of climate change mitigation as they account for over 70% of global carbon emissions. However, cities vary in their energy systems and socioeconomic capacities to transition to renewable energy. To address this heterogeneity, this study proposes an Energy Transition Index (ETI) specifically designed for cities, and applies it to track the progress of energy transition in Chinese cities. The city-level ETI framework is based on the national ETI developed by the World Economic Forum (WEF) and comprises two sub-indexes: the Energy System Performance sub-index, which evaluates the current status of cities' energy systems in terms of energy transition, and the Transition Readiness sub-index, which assesses their socioeconomic capacity for future energy transition. The initial version of the dataset includes ETI and its sub-indexes for 282 Chinese cities from 2003 to 2019, with annual updates planned. The spatiotemporal data provided by the dataset facilitates research into the energy transition roadmap for different cities, which can help China achieve its energy transition goals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA