Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; : 107710, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39178946

RESUMEN

Molecular subtypes play a pivotal role in guiding preclinical and clinical risk assessment and treatment strategies in cancer. In this study, we extracted whole-tissue transcriptomic data from 1,987 ovarian cancer patients spanning 26 independent GEO cohorts. A total of four consensus subtypes (C1-C4) were identified, notably, subtype C1 samples exhibited a poor prognosis and higher M2 macrophages infiltration, whereas subtype C2 samples demonstrated the best prognosis and higher CD4 resting T cells infiltration. Additionally, we characterized cancer- and stromal-specific gene expression profiles, and conducted an analysis of ligand-receptor interactions within these compartments. Based on cancer compartment, subtype-specific interactions as well as gene signatures for each molecular subtype were identified. Leveraging single-cell transcriptomic data, we delineated malignant epithelial cells with four molecular subtypes and observed an increase in C1 cell proportions from primary to relapse to metastasis stages, with a corresponding decrease in C2 cell proportions. Furthermore, we investigated subtype-specific interaction with T cells through integrated analysis of bulk and single-cell datasets. Finally, we developed a robust 10-gene risk model based on subtype gene signatures for prognostic evaluation in ovarian cancer, demonstrating its efficacy across independent datasets. In summary, this study systematically explored ovarian cancer molecular subtypes and provided a framework for other cancer types.

2.
BMC Womens Health ; 24(1): 454, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134972

RESUMEN

BACKGROUND: Breast and cervical cancer are the most common cancers in women, and are associated with high morbidity and mortality rates. Cancer screening can facilitate early diagnosis, reduce mortality, and ease the burden of cancer. Social support and self-efficacy are strongly associated with cancer screening behavior. The present study aimed to explore the mediating effect of self-efficacy on social support and cancer screening behavior. METHODS: In this cross-sectional survey study conducted from June to October 2023, 312 women aged 35-65 years were recruited from the East Coast area of China. A general information questionnaire, cancer screening behavior questionnaire, social support scale and self-efficacy scale were used to collect data. Descriptive statistics were used to analyze the general characteristics of participants; one-way analysis of variance was used to test for differences in the measured variables; and Pearson's correlation analyses were used to describe the relationship among social support, self-efficacy, and cancer screening behavior. A mediation model was constructed and analyzed using the PROCESS macro for SPSS. RESULTS: The mean (standard deviation) screening behavior score for breast cancer and cervical cancer was 3.98 (2.79), representing an intermediate level. Self-efficacy was closely related to social support and cancer screening behavior. Social support showed a significant positive correlation with self-efficacy (r = 0.37, p < 0.01) and cancer screening behavior (r = 0.18, p < 0.01). Self-efficacy was also significantly positively correlated with cancer screening behavior (r = 0.19, p < 0.05). Self-efficacy showed a full mediating effect between social support and cancer screening behavior, with an explanatory power of 32%. CONCLUSIONS: The findings emphasize the need to increase women's level of social support and self-efficacy, which in turn can increase women's participation in breast and cervical cancer screening.


Asunto(s)
Neoplasias de la Mama , Detección Precoz del Cáncer , Autoeficacia , Apoyo Social , Neoplasias del Cuello Uterino , Humanos , Femenino , Persona de Mediana Edad , Estudios Transversales , Detección Precoz del Cáncer/psicología , Detección Precoz del Cáncer/estadística & datos numéricos , Detección Precoz del Cáncer/métodos , Adulto , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/psicología , China , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/psicología , Anciano , Encuestas y Cuestionarios , Conductas Relacionadas con la Salud , Conocimientos, Actitudes y Práctica en Salud , Pueblos del Este de Asia
4.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000320

RESUMEN

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cadmio , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Cadmio/toxicidad , Cadmio/metabolismo , Populus/genética , Populus/metabolismo , Populus/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estrés Fisiológico/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica
5.
Vaccine ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38937182

RESUMEN

OBJECTIVE: The aim of this study is to demonstrate that the freeze-dried human rabies vaccine (Vero cell), administered in a four-dose schedule (2-1-1) to the 10-60 years old population, has immunogenicity that is not inferior to the approved five-dose schedule and similar vaccines with a four-dose schedule, and to evaluate its safety. METHOD: A total of 1800 individuals were enrolled and divided into three groups: four-dose test group, four-dose control group, and five-dose control group. The rabies virus neutralizing antibodies were measured using the Rapid Fluorescent Focus Inhibition Test to assess immunogenicity, and the incidence of adverse events and serious adverse events were statistically analyzed. RESULTS: The seroconversion rates 14 days after the first dose and 14 days after the complete course of vaccination were 100% in all three groups. The antibody GMC of the four-dose test group was higher than that of the five-dose control group, but slightly lower than the four-dose control group. Seven days after the first dose, both four-dose regimen groups showed higher seroconversion rates and antibody GMCs compared to the five-dose regimen group, proving that the immunogenic effect of the four-dose regimen seven days post-first vaccination is superior to the five-dose regimen. The overall incidence of adverse events showed no significant difference between the four-dose test group and the five-dose control group, but was significantly lower in the four-dose test group compared to the four-dose control group. CONCLUSION: The vaccine in the four-dose test group is equivalent in immunogenic effect to the four-dose control group vaccine and superior to the five-dose control group vaccine; the safety of the vaccine in the four-dose test group is equivalent to the five-dose control group vaccine and superior to the four-dose control group vaccine. CLINICALTRIALS: gov number: NCT05549908.

6.
Protein Expr Purif ; 221: 106519, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38830441

RESUMEN

Sinopotamon Henanense expresses two metal‒induced metallothioneins (MTs), Cd‒induced MT and Cu‒induced MT (ShCuMT). The Cd‒induced MT has been characterized as a Cd‒thiolate MT. However, it is unknown whether ShCuMT is a Cu‒thiolate MT. In the present study, ShCuMT was expressed heterologously in Escherichia coli and purified by Ni‒NTA column and superdex‒75 column. And its metal‒binding feature was evaluated by DTNB reaction, circular dichroism spectroscopy (CD), isothermal microtitration (ITC), electrospray flight mass spectrometry (ESI‒TOF‒MS), and matrix‒assisted laser desorption ionization flight mass spectrometry (MALDI‒TOF‒MS). Bioinformatics analysis demonstrated that ShCuMT possessed the cysteine‒triplet motif of a Cu‒specific MT. Expression and purification of ShCuMT illustrated that SUMO tag used as the production system for ShCuMT resulted in a high production yield. The stability order of ShCuMT binding metal ions were Cu (Ⅰ) > Cd (Ⅱ) > Zn (Ⅱ). The CD spectrum indicated that ShCuMT binding with Cu (I) exhibited a compact thiol metal clusters structure. Besides, there emerged no a visible nickel‒thiol absorption after Ni‒NTA column affinity chromatography. The ITC results implied that Cu‒ShCuMT possessed the optimal thermodynamic conformation and the highest stoichiometric number of Cu (Ⅰ). Overall, the results suggested that SUMO fusion system is a robust and inexpensive approach for ShCuMT expression and Ni‒NTA column had no influence on metal binding of ShCuMT and Cu(Ⅰ) was considered its cognate metal ion, and ShCuMT possessed canonical Cu‒thiolate characteristics. The metal binding feature of ShCuMT reported here contributes to elucidating the structure‒function relationship of ShCuMT in S. Henanense.


Asunto(s)
Cobre , Metalotioneína , Metalotioneína/genética , Metalotioneína/química , Metalotioneína/metabolismo , Metalotioneína/aislamiento & purificación , Animales , Cobre/metabolismo , Cobre/química , Braquiuros/genética , Braquiuros/metabolismo , Braquiuros/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Cadmio/metabolismo , Cadmio/química , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/biosíntesis
7.
Intervirology ; 67(1): 72-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38934174

RESUMEN

INTRODUCTION: This study aimed to investigate the differences between pregnant women with chronic hepatitis B virus (HBV) infection and intrafamilial infection and those without intrafamilial infection. METHODS: HBV-DNA was extracted from the sera of 16 pregnant women with chronic hepatitis B (CHB) and their family members for gene sequencing and phylogenetic analyses. A total of 74 pregnant women with CHB were followed up from the second trimester to 3 months postpartum. Viral markers and other laboratory indicators were compared between pregnant women with CHB with and without intrafamilial infection. RESULTS: The phylogenetic tree showed that HBV lines in the mother-spread pedigree shared a node, whereas there was an unrelated genetic background for HBV lines in individuals without intrafamilial infection. From delivery to 3 months postpartum, compared with those without intrafamilial infection, pregnant women with intrafamilial infection were related negatively to HBV-DNA (ß = -0.43, 95% confidence interval [CI]: -0.76 to -0.12, p = 0.009), HBeAg (ß = -195.15, 95% CI: -366.35 to -23.96, p = 0.027), and hemoglobin changes (ß = -8.09, 95% CI: -15.54 to -0.64, p = 0.035) and positively to changes in the levels of alanine aminotransferase (ß = 73.9, 95% CI: 38.92-108.95, p < 0.001) and albumin (ß = 2.73, 95% CI: 0.23-5.23, p = 0.033). CONCLUSION: The mother-spread pedigree spread model differs from that of non-intrafamilial infections. Pregnant women with intrafamilial HBV infection have less hepatitis flares and liver damage, but their HBV-DNA and HBeAg levels rebound faster after delivery, than those without intrafamilial infection by the virus.


Asunto(s)
ADN Viral , Virus de la Hepatitis B , Hepatitis B Crónica , Filogenia , Complicaciones Infecciosas del Embarazo , Humanos , Femenino , Embarazo , Hepatitis B Crónica/virología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/clasificación , Adulto , ADN Viral/genética , ADN Viral/sangre , Complicaciones Infecciosas del Embarazo/virología , Antígenos e de la Hepatitis B/sangre , Adulto Joven , Transmisión Vertical de Enfermedad Infecciosa , Genotipo , Análisis de Secuencia de ADN
8.
Front Public Health ; 12: 1357073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903575

RESUMEN

Background: Persistent HR-HPV causes cervical cancer, exhibiting geographic variance. Europe/Americas have higher HPV16/18 rates, while Asia/Africa predominantly have non-16/18 HR-HPV. This study in Fujian, Asia, explores non-16/18 HR-HPV infections, assessing their epidemiology and cervical lesion association for targeted prevention. Methods: A total of 101,621 women undergoing HPV screening at a hospital in Fujian Province from 2013 to 2019 were included. HPV genotyping was performed. A subset of 11,666 HPV-positive women with available histopathology results were analyzed to characterize HPV genotype distribution across cervical diagnoses. Results: In 101,621 samples, 24.5% tested positive for HPV. Among these samples, 17.3% exhibited single infections, while 7.2% showed evidence of multiple infections. The predominant non-16/18 high-risk HPV types identified were HPV 52, 58, 53, 51, and 81. Single HPV infections accounted for 64.1% of all HPV-positive cases, with 71.4% of these being non-16/18 high-risk HPV infections. Age-related variations were observed in 11,666 HPV-positive patients with pathological results. Cancer patients were older. In the cancer group, HPV52 (21.8%) and HPV58 (18.6%) were the predominant types, followed by HPV33, HPV31, and HPV53. Compared to single HPV16/18 infection, non-16/18 HPV predominated in LSIL. Adjusted odds ratios (OR) for LSIL were elevated: multiple HPV16/18 (OR 2.18), multiple non-16/18 HR-HPV (OR 2.53), and multiple LR-HPV (OR 2.38). Notably, solitary HPV16/18 conferred higher odds for HSIL and cancer. Conclusion: Our large-scale analysis in Fujian Province highlights HPV 52, 58, 53, 51, and 81 as predominant non-16/18 HR-HPV types. Multiple HPV poses increased LSIL risks, while solitary HPV16/18 elevates HSIL and cancer odds. These findings stress tailored cervical cancer prevention, highlighting specific HPV impacts on lesion severity and guiding region-specific strategies for optimal screening in Asia, emphasizing ongoing surveillance in the vaccination era.


Asunto(s)
Genotipo , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Infecciones por Papillomavirus/virología , Persona de Mediana Edad , Adulto , China/epidemiología , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/prevención & control , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Anciano , Detección Precoz del Cáncer , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/aislamiento & purificación
9.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593488

RESUMEN

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Asunto(s)
Homeostasis , Fosfolipasa D , Proteínas de Plantas , Populus , Estrés Salino , Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Populus/metabolismo , Populus/genética , Populus/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Técnicas del Sistema de Dos Híbridos
10.
Plant Sci ; 344: 112082, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583807

RESUMEN

The expression of R2R3-MYB transcription factor PeRAX2 increased transiently upon CdCl2 exposure (100 µM, 48 h) in leaves and roots of Populus euphratica. We observed that overexpression of PeRAX2 increased Cd2+ concentration in Arabidopsis root cells and Cd2+ amount in whole plant, which was due to the increased Cd2+ influx into root tips. However, the Cd2+ influx facilitated by PeRAX2 overexpression was substantially reduced by LaCl3 (an inhibitor of Ca2+-channels), suggesting that PeRAX2 could promote the Cd2+ entering through PM Ca2+-permeable channels (CaPCs) in the roots. It is noting that the expression of annexin1 (AtANN1), which mediates the influx of divalent cations through the PM calcium channels, was upregulated by Cd2+ in PeRAX2-transgenic Arabidopsis. Bioinformatic analysis revealed that the AtANN1 promoter (AtANN1-pro) contains four cis-elements for MYB binding. The PeRAX2 interaction with AtANN1-pro was validated by LUC reporter assay, EMSA, and Y1H assay. Our data showed that PeRAX2 binds to the AtANN1 promoter region to regulate gene transcription and that AtANN1 mediates the Cd2+ entry through CaPCs in the PM, leading to a Cd2+ enrichment in transgenic plants. The PeRAX2-stimulated Cd2+ enrichment consequently resulted in high H2O2 production in root cells of transgenic plants. The expression of AtSOD and AtPOD and activities of CAT, SOD, POD increased in the transgenic lines under Cd2+ stress. However, the Cd2+-upregulated expression and activity of antioxidative enzymes were less pronounced in the PeRAX2-overexpressed lines, compared to the wildtype and vector controls. As a result, root length and plant growth were more suppressed by Cd2+ in the transgenic lines. Our data suggest that transcriptional regulation of AtANN1 by PeRAX2 can be utilized to improve Cd2+ enrichment and phytoremediation, although the enriched Cd2+ affected antioxidant defense system and plant growth in the model species.


Asunto(s)
Arabidopsis , Cadmio , Regulación de la Expresión Génica de las Plantas , Populus , Regiones Promotoras Genéticas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo , Cadmio/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética
11.
Arch Biochem Biophys ; 754: 109896, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417691

RESUMEN

AIMS: The purpose of this study was to explore the role of RAE1 in the invasion and metastasis of gastric cancer (GC) cells. MATERIALS AND METHODS: RAE1 expression in GC cells was determined by reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). Cell models featuring RAE1 gene silencing and overexpression were constructed by lentiviral transfection; The proliferation, migration, and invasion ability of cells were detected by cell counting, colony formation assay, would healing assay, and transwell invasion and migration test. WB analysis of ERK/MAPK signaling pathway (ERK1/2, p-ERK1/2, c-Myc) and EMT-related molecules (ZEB1, E-cadherin, N-cadherin, and Vimentin). RESULTS: The expression level of RAE1 in GC was notably higher than in adjacent tissues. Elevated RAE1 expression correlated with an unfavorable prognosis for GC patients. Knockdown of RAE1, as compared to the control group, resulted in a significant inhibition of proliferation, migration, and invasion abilities in GC cell lines. Furthermore, RAE1 knockdown led to a substantial decrease in the expression of N-cadherin, vimentin, ZEB1, p-ERK1/2, and c-Myc proteins, coupled with a marked increase in E-cadherin expression. The biological effects of RAE1 in GC cells were effectively reversed by the inhibition of the ERK/MAPK signaling pathway using SCH772984. Additionally, RAE1 knockdown demonstrated a suppressive effect on GC tumor size in vivo. Immunohistochemistry (IHC) results revealed significantly lower expression of Ki-67 in RAE1 knockout mice compared to the control group. CONCLUSIONS: RAE1 promotes GC cell migration and invasion through the ERK/MAPK pathway and is a potential therapeutic target for GC therapy.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Gástricas , Animales , Humanos , Ratones , Cadherinas/genética , Cadherinas/metabolismo , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica/genética , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Vimentina/genética , Vimentina/metabolismo
12.
Tree Physiol ; 44(3)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38366380

RESUMEN

Nitrogen (N) plays an important role in mitigating salt stress in tree species. We investigate the genotypic differences in the uptake of ammonium (NH4+) and nitrate (NO3-) and the importance for salt tolerance in two contrasting poplars, salt-tolerant Populus euphratica Oliv. and salt-sensitive P. simonii × (P. pyramidalis ×Salix matsudana) (P. popularis cv. 35-44, P. popularis). Total N content, growth and photosynthesis were significantly reduced in P. popularis after 7 days of exposure to NaCl (100 mM) supplied with 1 mM NH4+ and 1 mM NO3-, while the salt effects were not pronounced in P. euphratica. The 15NH4+ trace and root flux profiles showed that salt-stressed poplars retained ammonium uptake, which was related to the upregulation of ammonium transporters (AMTs) in roots, as two of the four AMTs tested significantly increased in salt-stressed P. euphratica (i.e., AMT1.2, 2.1) and P. popularis (i.e., AMT1.1, 1.6). It should be noted that P. euphratica differs from salt-sensitive poplar in the maintenance of NO3- under salinity. 15NO3- tracing and root flux profiles showed that P. euphratica maintained nitrate uptake and transport, while the capacity to uptake NO3- was limited in salt-sensitive P. popularis. Salt increased the transcription of nitrate transporters (NRTs), NRT1.1, 1.2, 2.4, 3.1, in P. euphratica, while P. popularis showed a decrease in the transcripts of NRT1.1, 2.4, 3.1 after 7 days of salt stress. Furthermore, salt-stimulated transcription of plasmalemma H+-ATPases (HAs), HA2, HA4 and HA11 contributed to H+-pump activation and NO3- uptake in P. euphratica. However, salt stimulation of HAs was less pronounced in P. popularis, where a decrease in HA2 transcripts was observed in the stressed roots. We conclude that the salinity-decreased transcripts of NRTs and HAs reduced the ability to uptake NO3- in P. popularis, resulting in limited nitrogen supply. In comparison, P. euphratica maintains NH4+ and NO3- supply, mitigating the negative effects of salt stress.


Asunto(s)
Compuestos de Amonio , Populus , Nitratos/metabolismo , Cloruro de Sodio/farmacología , Populus/metabolismo , Raíces de Plantas/fisiología , Compuestos de Amonio/metabolismo , Proteínas de Transporte de Membrana , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/farmacología , Nitrógeno/metabolismo
13.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38423014

RESUMEN

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Asunto(s)
Cromatina , Proteínas Nucleares , Animales , Cromatina/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ADN/genética , Reparación del ADN por Unión de Extremidades , Histonas/genética , Histonas/metabolismo , Emparejamiento Cromosómico , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
14.
Drug Metab Rev ; 56(1): 62-79, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38226647

RESUMEN

Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/ß-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.


Asunto(s)
Melatonina , Neoplasias , Humanos , Melatonina/uso terapéutico , Melatonina/metabolismo , Transducción de Señal , Biología , Neoplasias/tratamiento farmacológico
15.
Circulation ; 149(11): 843-859, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38018467

RESUMEN

BACKGROUND: Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS: We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS: We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS: Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Ferroptosis , Humanos , Ratones , Animales , Gangliósido G(M3)/metabolismo , Proteómica , Músculo Liso Vascular/metabolismo , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & control , Aneurisma de la Aorta Abdominal/metabolismo , Hierro , Miocitos del Músculo Liso/metabolismo , Modelos Animales de Enfermedad
16.
Diabetes ; 73(2): 225-236, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976214

RESUMEN

Endothelial cells (EC) play essential roles in retinal vascular homeostasis. This study aimed to characterize retinal EC heterogeneity and functional diversity using single-cell RNA sequencing. Systematic analysis of cellular compositions and cell-cell interaction networks identified a unique EC cluster with high inflammatory gene expression in diabetic retina; sphingolipid metabolism is a prominent aspect correlated with changes in retinal function. Among sphingolipid-related genes, alkaline ceramidase 2 (ACER2) showed the most significant increase. Plasma samples of patients with nonproliferative diabetic retinopathy (NPDR) with diabetic macular edema (DME) or without DME (NDME) and active proliferative DR (PDR) were collected for mass spectrometry analysis. Metabolomic profiling revealed that the ceramide levels were significantly elevated in NPDR-NDME/DME and further increased in active PDR compared with control patients. In vitro analyses showed that ACER2 overexpression retarded endothelial barrier breakdown induced by ceramide, while silencing of ACER2 further disrupted the injury. Moreover, intravitreal injection of the recombinant ACER2 adeno-associated virus rescued diabetes-induced vessel leakiness, inflammatory response, and neurovascular disease in diabetic mouse models. Together, this study revealed a new diabetes-specific retinal EC population and a negative feedback regulation pathway that reduces ceramide content and endothelial dysfunction by upregulating ACER2 expression. These findings provide insights into cell-type targeted interventions for diabetic retinopathy.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Animales , Ratones , Humanos , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Retina/metabolismo , Ceramidas , Esfingolípidos
17.
Int J Biol Macromol ; 250: 126330, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37579898

RESUMEN

Levan is a high-valued ß-(2,6)-linked fructan with promising physicochemical and physiological properties and has diverse potential applications in the food, nutraceutical, pharmaceutical and cosmetic industry, but its commercial availability is still restricted to the relatively high costs of production. In this study, a strain identified as Microbacterium sp. XL1 was isolated from soil and highly produced exopolysaccharide (EPS). HPLC, FTIR and NMR spectroscopy revealed XL1-EPS is a levan-type fructan connected by ß-(2, 6) linkages. SEM, DLS and TGA-DSC analysis showed that XL1-EPS processed high morphological versatility, narrow size distribution in its solutions and excellent thermal stability. The levan yield reached 83.67 ± 4.06 g/L with corresponding productivity of 3.49 ± 0.17 g/L/h and a conversion yield of 39.8 ± 1.9 % using sucrose (210 g/L) as substrates under the optimal cultivation conditions concluded by the response surface methodology (RSM). More strikingly, the XL1 strain also has multi-type fructanases to generate levanbiose, kestose, DFA IV and other L-FOSs. These results suggest Microbacterium sp. XL1 is a promising strain to produce levan and can provide various levan/inulin-degrading enzymes to create a great diversity of FOSs.

18.
Heliyon ; 9(7): e18220, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37501983

RESUMEN

The oxidation resistance of TiC/Ni composites is crucial for its application in high-temperature oxidation environment. The in-situ TiC/Ni composites are fabricated by reactive sintering method, and the influence of TiC particle size on oxidation resistance of composite is studied. The particle size of TiC increases from 1.54 µm to 2.40 µm as the sintering holding time prolongs from 2 h to 6 h, due to the dissolution-reprecipitation mechanism. The oxidation kinetics of in-situ TiC/Ni composite with different TiC particle size oxidized at 800 °C for 100 h obeys parabolic kinetics. The oxidation mass gain of composite increases from 7.471 mg•cm-2 to 8.454 mg•cm-2, and the oxide scale on composites becomes thicker, as the particle size of TiC increases from 1.54 µm to 2.40 µm. The reduction of TiC particle size facilitates the formation of a dense and continuous oxide scale on composite, helpful to restrict the diffusion of O, Ti and Ni atoms during oxidation. Therefore, the reduction of TiC particle size is contributed to the optimization of oxidation resistance of in-situ TiC/Ni composites.

19.
CNS Neurosci Ther ; 29(10): 2775-2786, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37269061

RESUMEN

AIMS: Complex cellular communications between glial cells and neurons are critical for brain normal function and disorders, and single-cell level RNA-sequencing datasets display more advantages for analyzing cell communications. Therefore, it is necessary to systematically explore brain cell communications when considering factors such as sex and brain region. METHODS: We extracted a total of 1,039,459 cells derived from 28 brain single-cell RNA-sequencing (scRNA-seq) or single-nucleus RNA-sequencing (snRNA-seq) datasets from the GEO database, including 12 human and 16 mouse datasets. These datasets were further divided into 71 new sub-datasets when considering disease, sex, and region conditions. In the meanwhile, we integrated four methods to evaluate ligand-receptor interaction score among six major brain cell types (microglia, neuron, astrocyte, oligodendrocyte, OPC, and endothelial cell). RESULTS: For Alzheimer's disease (AD), disease-specific ligand-receptor pairs when compared with normal sub-datasets, such as SEMA4A-NRP1, were identified. Furthermore, we explored the sex- and region-specific cell communications and identified that WNT5A-ROR1 among microglia cells displayed close communications in male, and SPP1-ITGAV displayed close communications in the meninges region from microglia to neurons. Furthermore, based on the AD-specific cell communications, we constructed a model for AD early prediction and confirmed the predictive performance using multiple independent datasets. Finally, we developed an online platform for researchers to explore brain condition-specific cell communications. CONCLUSION: This research provided a comprehensive study to explore brain cell communications, which could reveal novel biological mechanisms involved in normal brain function and neurodegenerative diseases such as AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Semaforinas , Masculino , Humanos , Animales , Ratones , ARN Nuclear Pequeño , Perfilación de la Expresión Génica/métodos , Ligandos , Análisis de Expresión Génica de una Sola Célula , Enfermedad de Alzheimer/genética , Núcleo Solitario
20.
Int J Mol Sci ; 24(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37175914

RESUMEN

High NaCl (200 mM) increases the transcription of phospholipase Dδ (PLDδ) in roots and leaves of the salt-resistant woody species Populus euphratica. We isolated a 1138 bp promoter fragment upstream of the translation initiation codon of PePLDδ. A promoter-reporter construct, PePLDδ-pro::GUS, was introduced into Arabidopsis plants (Arabidopsis thaliana) to demonstrate the NaCl-induced PePLDδ promoter activity in root and leaf tissues. Mass spectrometry analysis of DNA pull-down-enriched proteins in P. euphratica revealed that PeGLABRA3, a basic helix-loop-helix transcription factor, was the target transcription factor for binding the promoter region of PePLDδ. The PeGLABRA3 binding to PePLDδ-pro was further verified by virus-induced gene silencing, luciferase reporter assay (LRA), yeast one-hybrid assay, and electrophoretic mobility shift assay (EMSA). In addition, the PeGLABRA3 gene was cloned and overexpressed in Arabidopsis to determine the function of PeGLABRA3 in salt tolerance. PeGLABRA3-overexpressed Arabidopsis lines (OE1 and OE2) had a greater capacity to scavenge reactive oxygen species (ROS) and to extrude Na+ under salinity stress. Furthermore, the EMSA and LRA results confirmed that PeGLABRA3 interacted with the promoter of AtPLDδ in transgenic plants. The upregulated AtPLDδ in PeGLABRA3-transgenic lines resulted in an increase in phosphatidic acid species under no-salt and saline conditions. We conclude that PeGLABRA3 activated AtPLDδ transcription under salt stress by binding to the AtPLDδ promoter region, conferring Na+ and ROS homeostasis control via signaling pathways mediated by PLDδ and phosphatidic acid.


Asunto(s)
Arabidopsis , Populus , Tolerancia a la Sal/genética , Populus/genética , Populus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA