RESUMEN
Plants actively develop intricate regulatory mechanisms to counteract the harmful effects of environmental stresses. The ubiquitin-proteasome pathway, a crucial mechanism, employs E3 ligases (E3s) to facilitate the conjugation of ubiquitin to specific target substrates, effectively marking them for proteolytic degradation. E3s play critical roles in many biological processes, including phytohormonal signaling and adaptation to environmental stresses. Arabidopsis Toxicosa en Levadura (ATL) proteins, belonging to a subfamily of RING-H2 E3s, actively modulate diverse physiological processes and plant responses to environmental stresses. Despite studies on the functions of certain ATL family members in rice and Arabidopsis, most ATLs still need more comprehensive study. This review presents an overview of the ubiquitin-proteasome system (UPS), specifically focusing on the pivotal role of E3s and associated enzymes in plant development and environmental adaptation. Our study seeks to unveil the active modulation of plant responses to environmental stresses by E3s and ATLs, emphasizing the significance of ATLs within this intricate process. By emphasizing the importance of studying the roles of E3s and ATLs, our review contributes to developing more resilient plant varieties and promoting sustainable agricultural practices while establishing a research roadmap for the future.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Complejo de la Endopetidasa Proteasomal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina/metabolismoRESUMEN
The Duboisia species, a group of plants native to Australia, have been historically valued for their pharmacological properties and have played a significant role in traditional medicine and pharmaceutical research. Persistent efforts are underway to enhance the efficacy of the active ingredient scopolamine, employing both conventional breeding methods and advanced biotechnology tools. The primary objective of this research was to establish a highly efficient method for isolating mesophyll protoplasts and facilitating their regeneration, thereby laying a robust foundation for the application of various advanced plant biotechnology tools in the pursuit of genetic enhancement. The mesophyll protoplast isolation process was developed for hybrid D. myoporoides × D. hopwoodii with careful optimisation of the following parameters: leaf strip size; incubation conditions; physical treatment; and enzyme concentration. The optimal parameters were combined in each individual step; the best enzyme concentration was determined to be 2% (w/v) cellulysin and 0.5% (w/v) macerase. Protoplast yield was found to be greatly affected by the enzyme concentrations. The isolated protoplasts were cultured at a density of 0.5 × 105 to best sustain the highest cell division (33.2%) and a microcalli induction frequency of 17.9%. After 40 days of culture in a modified KM8P medium at 25 °C in darkness, visible microcalli were transferred to a solidified Murashige and Skoog (MS) medium with 1 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction under a 16 h photoperiod. After 30 days of culture, compact organogenic calli were transferred into a solid MS medium with 6-benzylaminopurine (BA) alone or thidiazuron (TDZ) alone or in combination with BA or naphthalene acetic acid (NAA) for shoot regeneration. The maximum shoot regeneration frequency (63.3%) was observed in the medium with 1.5 mg L-1 TDZ alone. For the first time, a reliable protoplast isolation and regeneration system from mesophyll cells was established for Duboisia with high protoplast viability, successful microcalli formation, and intact plant regeneration. This innovation will significantly contribute towards the genetic enhancement of the Duboisia species.
RESUMEN
To achieve lignin valorization, we reported a simple method to direct covert lignin into carbon foam materials in this work. Unlike multiple steps required to fabricate traditional carbon foams from most of other precursors (often non-renewable), the approach herein required solely heating for carbon production. We found that the intrinsic features of lignin render the formation of lignin block meanwhile generate the porous structure under the invented heating course. Three key factors including glass transition temperature, crosslinking ability, and thermal stability of lignin were identified to determine the successful fabrication of lignin foam (i.e., precursor of carbon foam). Upon tuning the heating profile or fractionating the lignin, lignin foam with different morphologies and properties were obtained. After carbonization, the selected lignin-derived carbon foams possessed well porous structures with bulk densities of 0.52 or 0.62 g cm-3, superior integrity with strength properties of around 10 MPa, BET surface areas of 143.29 or 325.86 m2 g-1, and many other attractive properties. This work is expected to stimulate further seek of lignin valorization in carbon foam production.
Asunto(s)
Carbono , Lignina , Aerosoles , Carbono/química , Lignina/química , PorosidadRESUMEN
In this work, lignin-based carbon nanofibers (LCNFs) were for the first time served as substrate for in-situ electrodeposition of polyaniline (PANI) and tested as pseudocapacitor. Two LCNFs with different lignin ratios were designed to distinguish their morphology and structural properties. Next, PANI deposition mechanisms on both LCNFs were investigated and the electrochemical performance of the resulting LCNF/PANIs were evaluated. It was found although LCNF2 was composed of less uniform nanofibers due to more presence of lignin in precursor dope, it had higher tensile strength/modulus than LCNF1 (strength: 34.3MPa to 24.2 MPa; Modulus: 2.40 GPa to 1.45GPa) and was more cost-effective. Particularly, the beaded fibers on LCNF2 contributes to the deposition of PANI with higher specific mass capacitance (612.8 F g-1 to 547.0 F g-1). Upon assembling into solid-state supercapacitors, the Cm of LCNF2/PANI device was determined to be 229 F g-1 and the maximum energy density was 11.13Wh kg-1 at a power density of 0.08 kW kg-1. This work showed LCNF produced from renewable and low-cost lignin could be directly used as substrate for PANI deposition. Moreover, the composition in spinning dope played an important role in determining the performances of resulting pseudocapacitors.