RESUMEN
As an abundant agricultural and forestry biomass resource, hemicelluloses are hard to be effectively degraded and utilized by microorganisms due to the constraints of membrane and metabolic regulations. Herein, we report a synthetic extracellular metabolic pathway with hemicellulose-degrading-enzymes controllably displayed on Escherichia coli surface as engineered bacterial consortia members for efficient utilization of xylan, the most abundant component in hemicellulose. Further, we develop a hemicellulose/O2 microbial fuel cell (MFC) configuring of enzyme-engineered bacterial consortia based bioanode and bacterial-displayed laccase based biocathode. The optimized MFC exhibited an open-circuit voltage of 0.71 V and a maximum power density (Pmax) of 174.33 ± 4.56 µW cm-2. Meanwhile, 46.6% (w/w) α-ketoglutarate was produced in this hemicellulose fed-MFC. Besides, the MFC retained over 95% of the Pmax during 6 days' operation. Therefore, this work establishes an effective and sustainable one-pot process for catalyzing renewable biomass into high-value products and electricity in an environmentally-friendly way.
Asunto(s)
Fuentes de Energía Bioeléctrica , Escherichia coli , Polisacáridos , Polisacáridos/metabolismo , Fuentes de Energía Bioeléctrica/microbiología , Escherichia coli/metabolismo , Escherichia coli/genética , Consorcios Microbianos/fisiología , Lacasa/metabolismo , Lacasa/genética , Biomasa , Electricidad , Xilanos/metabolismo , Ingeniería Metabólica/métodos , ElectrodosRESUMEN
BACKGROUND: Echocardiography-based ultrasomics analysis aids Kawasaki disease (KD) diagnosis but its role in predicting coronary artery lesions (CALs) progression remains unknown. We aimed to develop and validate a predictive model combining echocardiogram-based ultrasomics with clinical parameters for CALs progression in KD. METHODS: Total 371 KD patients with CALs at baseline were enrolled from a retrospective cohort (cohort 1, n = 316) and a prospective cohort (cohort 2, n = 55). CALs progression was defined by increased Z scores in any coronary artery branch at the 1-month follow-up. Patients in cohort 1 were split randomly into training and validation set 1 at the ratio of 6:4, while cohort 2 comprised validation set 2. Clinical parameters and ultrasomics features at baseline were analyzed and selected for models construction. Model performance was evaluated by area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC) and decision curve analysis (DCA) in the training and two validation sets. RESULTS: At the 1-month follow-ups, 65 patients presented with CALs progression. Three clinical parameters and six ultrasomics features were selected to construct the model. The clinical-ultrasomics model exhibited a good predictive capability in the training, validation set 1 and set 2, achieving AUROCs of 0.83 (95% CI, 0.75-0.90), 0.84 (95% CI, 0.74-0.94), and 0.73 (95% CI, 0.40-0.86), respectively. Moreover, the AUPRC values and DCA of three model demonstrated that the clinical-ultrasomics model consistently outperformed both the clinical model and the ultrasomics model across all three sets, including the training set and the two validation sets. CONCLUSIONS: Our study demonstrated the effective predictive capacity of a prediction model combining echocardiogram-based ultrasomics features and clinical parameters in predicting CALs progression in KD.
Asunto(s)
Enfermedad de la Arteria Coronaria , Progresión de la Enfermedad , Ecocardiografía , Síndrome Mucocutáneo Linfonodular , Humanos , Síndrome Mucocutáneo Linfonodular/diagnóstico por imagen , Masculino , Femenino , Estudios Retrospectivos , Preescolar , Lactante , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estudios Prospectivos , Valor Predictivo de las PruebasRESUMEN
Plant leaves can turn entirely absorbed light into chemical energy due to their spatially separated photosystems I and II in the thylakoid membrane that enables unidirectional Z-scheme type charge transfer between them. In artificial systems that mimic leaves, a lack of spatial and interfacial control of active units (i.e., hydrogen evolution photocatalyst/HEP and oxygen evolution photocatalyst/OEP) introduces competitive charge transfer channels between them, resulting in deficient Z-scheme type charge transfer. Herein, we demonstrate that a patterned photocatalyst sheet, namely, an artificial leaf, comprising an ordered and separated distribution of the OEP and HEP strips on a conductive substrate, achieves unidirectional Z-scheme type charge transfer as the leaves do. It represents a next-generation photocatalytic system that mimics the leaves to bring breakthrough in photocatalytic over water splitting performance with the combination of highly active HEP and OEP photocatalysts, opening up a promising avenue toward solar energy conversion by artificial photosynthesis.
RESUMEN
Using size-selected anion photoelectron spectroscopy and density functional theory, we investigated the structures and properties of fluorinated bimetallic clusters CoAuF1-2- and CuAuF1-2- and their neutrals. Both experimental and theoretical results show that in these cluster anions, Au behaves like a halogen atom. For example, the measured vertical detachment energies (VDEs) of CoAuF- (2.00 ± 0.08 eV) and CuAuF- (3.8 ± 0.1 eV) are close to those of CoF2- (2.12 ± 0.08 eV) and CuF2- (3.58 ± 0.08 eV), respectively. The theoretical results show that the geometries and electronic structures of CoAuF- and CuAuF- are similar to those of CoF2- and CuF2-. The natural population analysis and natural electron configuration analyses further confirm that the electronic properties of Au in MAuF- (M = Co, Cu) mimic those of MF2-. In addition, the electron localization function analyses show that the M-Au chemical bonds are similar to the corresponding M-F chemical bonds, providing evidence for the ionic nature of the interactions. When a second F atom is attached to the CoAuF- and CuAuF- clusters, the VDEs of the resulting CoAuF2- and CuAuF2- are 4.38 ± 0.08 eV and 3.71 ± 0.08 eV, respectively, indicating their superhalogen character as these values are higher than those of halogen anions. The results may be useful for understanding the properties of gold at the nanoscale that play an important role in catalysis and nanotechnology.
RESUMEN
Background: There is inconsistent evidence regarding the accuracy of GNAS mutations identification for the diagnosis of FD/MAS. This study was performed to estimate the prevalence and diagnostic accuracy of GNAS mutations detection and to preliminarily investigate the genotype-phenotype correlation in FD patients. Methods: Five electronic databases were searched from 1995 to 2024 using search terms related to GNAS and fibrous dysplasia. Observational studies of FD patients undergoing GNAS mutation detection in FD were included. Results: A total of 878 FD patients were included. The pooled prevalence of GNAS mutations in FD based on the random effects model was 74% (95% CI = 64%-83%). Regarding diagnostic accuracy, a sensitivity of 0.83 (95% CI, 0.65-0.96), specificity of 0.99 (95% CI, 0.98-1.00) and the area under the receiver operating characteristic curve of 98.38% were found. Additionally, meta-analysis and Fisher's test showed the GNAS mutation types were significantly associated with FD types (OR = 3.51, 95% CI = 1.05 to 11.72; p < 0.05). Conclusion: A high detection rate of GNAS mutations occurred in FD, and its detection is reliable for diagnosing FD. Additionally, GNAS mutation type was types were significantly associated with FD type. Systematic Review Registration: Identifier CRD42024553469.
RESUMEN
Background: collagen type I is a fundamental composition of extracellular matrix. Typically it exists in the form of a heterotrimer, consisting of two α1 chains encoded by COL1A1 and one α2 chain encoded by COL1A2. However, in cancer a homotrimeric form of collagen type I comprises three α1 chains encoded by COL1A1 was founded. There is still a lack of transcriptional and histologic methods for detecting homotrimeric collagen type I. Furthermore, a comprehensive analysis of the pan-cancer distribution pattern and clinical relevance of homotrimeric collagen type I is conspicuously absent. Method: Using transcriptional and immunoflourance method, we established homocol signature, which is able to transcriptionally and histologically detect homotrimeric collagen type I. We investigated the diagnostic and prognostic potential of homocol as a novel cancer biomarker in a pan-cancer cohort. Furthermore, we assessed its association with clinical manifestations in a liver cancer cohort undergoing treatment at our institute. Result: Homotrimer Collagen Type I is predominantly expressed by cancer cells and is linked to several critical cancer hallmarks, particularly inflammatory response and proliferation. Survival analyses have indicated that a high Homocol expression is correlated with poor outcomes in most types of cancer studied. In terms of cancer detection, Homocol demonstrated strong performance in Receiver Operating Characteristic (ROC) analysis, with an Area Under Curve (AUC) of 0.83 for pan-cancer detection and between 0.72 and 0.99 for individual cancers.In cohorts undergoing PD1 treatment, we noted a higher presence of Homocol in the response group. In a Hepatocellular Carcinoma (HCC) clinical set, high Homocol expression was associated with an increased formation of intra-tumor tertiary lymphoid structures (TLS), larger tumor sizes, more advanced Barcelona Clinic Liver Cancer (BCLC) stages, higher microvascular invasion (MVI) grades, absence of a capsule, and an enriched para-tumor collagen presence. Conclusion: our research has led to the development of a novel gene signature that facilitates the detection of Homotrimer Collagen Type I. This may greatly assist efforts in cancer detection, prognosis, treatment response prediction, and further research into Homotrimer Collagen Type I.
RESUMEN
Current disinfection processes pose an emerging environmental risk due to the ineffective removal of antibiotic-resistant bacteria, especially disinfection residual bacteria (DRB) carrying multidrug-resistant plasmids (MRPs). However, the characteristics of DRB-carried MRPs are poorly understood. In this study, qPCR analysis reveals that the total absolute abundance of four plasmids in postdisinfection effluent decreases by 1.15 log units, while their relative abundance increases by 0.11 copies/cell compared to investigated wastewater treatment plant (WWTP) influent. We obtain three distinctive DRB-carried MRPs (pWWTP-01-03) from postdisinfection effluent, each carrying 9-11 antibiotic-resistant genes (ARGs). pWWTP-01 contains all 11 ARGs within an â¼25 Kbp chimeric genomic island showing strong patterns of recombination with MRPs from foodborne outbreaks and hospitals. Antibiotic-, disinfectant-, and heavy-metal-resistant genes on the same plasmid underscore the potential roles of disinfectants and heavy metals in the coselection of ARGs. Additionally, pWWTP-02 harbors an adhesin-type virulence operon, implying risks of both antibiotic resistance and pathogenicity upon entering environments. Furthermore, some MRPs from DRB are capable of transferring and could confer selective advantages to recipients under environmentally relevant antibiotic pressure. Overall, this study advances our understanding of DRB-carried MRPs and highlights the imminent need to monitor and control wastewater MRPs for environmental security.
Asunto(s)
Desinfectantes , Purificación del Agua , Desinfección , Genes Bacterianos , Bacterias/genética , Antibacterianos/farmacología , Desinfectantes/farmacología , Plásmidos/genéticaAsunto(s)
Angiografía con Fluoresceína , Edema Macular , Neuromielitis Óptica , Complicaciones del Embarazo , Tomografía de Coherencia Óptica , Humanos , Femenino , Neuromielitis Óptica/diagnóstico , Neuromielitis Óptica/complicaciones , Neuromielitis Óptica/tratamiento farmacológico , Embarazo , Edema Macular/diagnóstico , Edema Macular/tratamiento farmacológico , Edema Macular/etiología , Complicaciones del Embarazo/diagnóstico , Adulto , Angiografía con Fluoresceína/métodos , Agudeza Visual/fisiología , Glucocorticoides/uso terapéutico , Imagen por Resonancia MagnéticaRESUMEN
The eukaryotic AGC protein kinase subfamily (protein kinase A/ protein kinase G/ protein kinase C-family) is involved in regulating numerous biological processes across kingdoms, including growth and development, and apoptosis. PDK1(3-phosphoinositide-dependent protein kinase 1) is a conserved serine/threonine kinase in eukaryotes, which is both a member of AGC kinase and a major regulator of many other downstream AGC protein kinase family members. Although extensively investigated in model plant Arabidopsis, detailed reports for tobacco PDK1s have been limited. To better understand the functions of PDK1s in tobacco, CRISPR/CAS9 transgenic lines were generated in tetraploid N. tabacum, cv. Samsun (NN) with 5-7 of the 8 copies of 4 homologous PDK1 genes in tobacco genome (NtPDK1a/1b/1c/1d homologs) simultaneously knocked out. Numerous developmental defects were observed in these NtPDK1a/1b/1c/1d CRISPR/CAS9 lines, including cotyledon fusion leaf shrinkage, uneven distribution of leaf veins, convex veins, root growth retardation, and reduced fertility, all of which reminiscence of impaired polar auxin transport. The severity of these defects was correlated with the number of knocked out alleles of NtPDK1a/1b/1c/1d. Consistent with the observation in Arabidopsis, it was found that the polar auxin transport, and not auxin biosynthesis, was significantly compromised in these knockout lines compared with the wild type tobacco plants. The fact that no homozygous plant with all 8 NtPDK1a/1b/1c/1d alleles being knocked out suggested that knocking out 8 alleles of NtPDK1a/1b/1c/1d could be lethal. In conclusion, our results indicated that NtPDK1s are versatile AGC kinases that participate in regulation of tobacco growth and development via modulating polar auxin transport. Our results also indicated that CRISPR/CAS9 technology is a powerful tool in resolving gene redundancy in polyploidy plants.
Asunto(s)
Arabidopsis , Nicotiana , Nicotiana/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sistemas CRISPR-Cas , Proteínas Quinasas/genética , Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
AIMS: This study was designed to evaluate the magnetic resonance imaging (MRI) patterns of the lower limb muscles in dermatomyositis (DM) with anti-transcriptional intermediate factor 1-γ (anti-TIF1-γ) antibody. METHODS: This retrospective, observational, cross-sectional study enrolled 12 adult DM patients with anti-TIF1-γ antibody. Muscles were assessed for fascial edema, subcutaneous-tissue edema, muscle edema, and fatty replacement. These features were analyzed in relation to clinical characteristics. RESULTS: All 12 patients underwent hip and thigh MRI, and 8 completed calf MRI. All patients showed myofascial edema, muscle edema, and fatty replacement, and 8 out of 12 further exhibited subcutaneous-tissue edema. Specifically, myofascial edema of the gastrocnemius was observed in all patients (8/8). The vastus intermedialis and vastus lateralis muscles showed the most severe muscle edema, whereas the caput breve of the biceps femoris, semitendinosus, and soleus muscles exhibited the most severe fatty replacement. Although only 1 patient exhibited asymmetric muscle weakness, 9 showed asymmetric muscle edema, and 10 showed asymmetric fatty replacement. Changes in muscle edema positively correlated with creatine kinase (CK) levels. CONCLUSIONS: Myofascial edema of gastrocnemius was a prominent characteristic of anti-TIF1-γ-positive DM. Early detection of muscle edema, as well as CK levels, may be helpful for monitoring disease activity.
Asunto(s)
Dermatomiositis , Adulto , Humanos , Dermatomiositis/complicaciones , Dermatomiositis/diagnóstico por imagen , Estudios Retrospectivos , Estudios Transversales , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Imagen por Resonancia Magnética/métodos , Edema/diagnóstico por imagen , Edema/patologíaRESUMEN
BACKGROUND: Xanthomonas oryzae pv. oryzae (Xoo) is often considered one of the most destructive bacterial pathogens causing bacterial leaf blight (BLB), resulting in significant yield and cost losses in rice. In this study, a series of novel derivatives containing the isopropanolamine moiety linked to various substituted phenols and piperazines were designed, synthesized and screened. RESULTS: Antibacterial activity results showed that most compounds had good inhibitory effects on Xoo, among which compound W2 (EC50 = 2.74 µg mL-1) exhibited the most excellent inhibitory activity, and W2 also had a certain curative effect (35.89%) on rice compared to thiodiazole copper (TC) (21.57%). Scanning electron microscopy (SEM) results indicated that compound W2 could cause rupture of the Xoo cell membrane. Subsequently, proteomics and quantitative real-time polymerase chain reaction revealed that compound W2 affected the physiological processes of Xoo and may exert antibacterial activity by targeting the two-component system pathway. Interestingly, W2 upregulated Xoo's methyltransferase to impact on its pathogenicity. CONCLUSION: The present study offers a promising phenolic-piperazine-sopropanolamine compound as an innovative antibacterial strategy by specifically targeting the two-component system pathway and inducing upregulation of methyltransferase to effectively impact Xoo's pathogenicity. © 2024 Society of Chemical Industry.
Asunto(s)
Antibacterianos , Xanthomonas , Xanthomonas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Fenoles/farmacología , Fenoles/química , Diseño de Fármacos , Piperazinas/farmacología , Piperazinas/química , Piperazinas/síntesis química , Oryza/microbiología , Enfermedades de las Plantas/microbiologíaRESUMEN
The practical applications of solar-driven water splitting pivot on significant advances that enable scalable production of robust photoactive films. Here, we propose a proof-of-concept for fabricating robust photoactive films by a particle-implanting technique (PiP) which embeds semiconductor photoabsorbers in the liquid metal. The strong semiconductor/metal interaction enables resulting films efficient collection of photogenerated charges and superior photoactivity. A photoanode of liquid-metal embraced BiVO4 can stably operate over 120 h and retain ~ 70% of activity when scaled from 1 to 64 cm2. Furthermore, a Z-scheme photocatalyst film of liquid-metal embraced BiVO4 and Rh-doped SrTiO3 particles can drive overall water splitting under visible light, delivering an activity 2.9 times higher than that of the control film with gold support and a 110 h stability. These results demonstrate the advantages of the PiP technique in constructing robust and efficient photoactive films for artificial photosynthesis.
RESUMEN
Efficient upconversion electroluminescence is highly desirable for a broad range of optoelectronic applications, yet to date, it has been reported only for ensemble systems, while the upconversion electroluminescence efficiency remains very low for single-molecule emitters. Here we report on the observation of anomalously bright single-molecule upconversion electroluminescence, with emission efficiencies improved by more than one order of magnitude over previous studies, and even stronger than normal-bias electroluminescence. Intuitively, the improvement is achieved via engineering the energy-level alignments at the molecule-substrate interface so as to activate an efficient spin-triplet mediated upconversion electroluminescence mechanism that only involves pure carrier injection steps. We further validate the intuitive picture with the construction of delicate electroluminescence diagrams for the excitation of single-molecule electroluminescence, allowing to readily identify the prerequisite conditions for producing efficient upconversion electroluminescence. These findings provide deep insights into the microscopic mechanism of single-molecule upconversion electroluminescence and organic electroluminescence in general.
RESUMEN
BACKGROUND: Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS: Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 µg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 µg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 µg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 µg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION: Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.
Asunto(s)
Oryza , Quinazolinas , Virus del Mosaico del Tabaco , Xanthomonas , Ribavirina/metabolismo , Ribavirina/farmacología , Simulación del Acoplamiento Molecular , Piperazina/metabolismo , Piperazina/farmacología , Proteómica , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antivirales/farmacología , Enfermedades de las Plantas , Relación Estructura-ActividadRESUMEN
We report the design and realization of the back focal plane (BFP) imaging for the light emission from a tunnel junction in a low-temperature ultrahigh-vacuum (UHV) scanning tunneling microscope (STM). To achieve the BFP imaging in a UHV environment, a compact "all-in-one" sample holder is designed and fabricated, which allows us to integrate the sample substrate with the photon collection units that include a hemisphere solid immersion lens and an aspherical collecting lens. Such a specially designed holder enables the characterization of light emission both within and beyond the critical angle and also facilitates the optical alignment inside a UHV chamber. To test the performance of the BFP imaging system, we first measure the photoluminescence from dye-doped polystyrene beads on a thin Ag film. A double-ring pattern is observed in the BFP image, arising from two kinds of emission channels: strong surface plasmon coupled emissions around the surface plasmon resonance angle and weak transmitted fluorescence maximized at the critical angle, respectively. Such an observation also helps to determine the emission angle for each image pixel in the BFP image and, more importantly, proves the feasibility of our BFP imaging system. Furthermore, as a proof-of-principle experiment, electrically driven plasmon emissions are used to demonstrate the capability of the constructed BFP imaging system for STM induced electroluminescence measurements. A single-ring pattern is obtained in the BFP image, which reveals the generation and detection of the leakage radiation from the surface plasmon propagating on the Ag surface. Further analyses of the BFP image provide valuable information on the emission angle of the leakage radiation, the orientation of the radiating dipole, and the plasmon wavevector. The UHV-BFP imaging technique demonstrated here opens new routes for future studies on the angular distributed emission and dipole orientation of individual quantum emitters in UHV.
RESUMEN
Hybrid cocatalysts have great application potential for improving the photocatalytic hydrogen evolution performance of semiconductors. The interfaces between components of hybrid cocatalysts make a great contribution to the improvement, but the associated mechanisms remain unclear. Herein, we prepared and tested three comparative CdS-based photocatalysts with NiS, NiS/Ni9S8, and Ni9S8 as the cocatalysts separately. The emphasis is placed on investigating the effect of the NiS/Ni9S8 interfaces on the photocatalytic hydrogen evolution performance of CdS. NiS/Ni9S8 exhibits a higher ability than NiS and Ni9S8 in making CdS a more active photocatalyst for water splitting. It shows that NiS, NiS/Ni9S8, and Ni9S8 perform similarly in terms of promoting the charge transfer and separation of CdS based on steady-state and time-resolved photoluminescence studies. At the same time, the linear sweep voltammetry and electrochemical impedance spectroscopy tests combined with the density functional theory calculations reveal that the component interfaces of NiS/Ni9S8 enable us to lower the water splitting activation energy, the charge-transfer resistance from the cocatalyst to sacrificial agent, and hydrogen adsorption Gibbs free energy. It is evidenced from this work that component interfaces of hybrid cocatalysts play a vital role in accelerating the dynamics of hydrogen evolution reactions.
RESUMEN
The prevalence of antibiotic resistance genes (ARGs) in diverse habitats threatens public health. Watersheds represent critical freshwater ecosystems that interact with both the soil and atmosphere. However, a holistic understanding of ARGs distribution across these environmental media is currently inadequate. We profiled ARGs and bacterial communities in air-water-soil in the same watershed area during four seasons using high-throughput qPCR and 16S rRNA gene sequencing. Our findings demonstrated that aminoglycoside resistance genes (58.5%) were dominant in water, and multidrug resistance genes (55.2% and 54.2%) were dominant in soil and air. Five ARGs and nineteen bacterial genera were consistently detected in all samples, were named as shared genes or bacteria. Co-occurrence Network analysis revealed the co-occurrence module of resistance genes, mobile genetic elements (MGEs), and potential bacterial hosts, indicating that shared genes and bacteria may persist and co-spread across different environmental media. The risk assessment framework, based on ARGs' abundance, detection rate, and mobility, identified 33 high-risk ARGs. This is essential to evaluate the health risks of ARGs and to develop strategies to limit the threat of antibiotic resistance. Our study offers new insights into the risks associated with ARGs in the environment and suggests that ARGs may depend on specific bacterial cohabitants that co-exist with MGEs to facilitate their spread across environmental interfaces.
Asunto(s)
Agua Potable , Genes Bacterianos , Suelo , Antibacterianos/farmacología , Ecosistema , ARN Ribosómico 16S/genética , Farmacorresistencia Microbiana/genética , Bacterias/genéticaRESUMEN
Tebuconazole, consisting of two enantiomers, has a high detectable rate in the soil. The residue of tebuconazole in the soil may cause risk to microbiota community. Antibiotic resistance genes (ARGs) are considered as emerging environmental contaminants, and they can be transferred vertically and horizontally between microbiota community in the soil. Until now, the enantioselective effect of tebuconazole on the microbiota community and ARGs in the soil and earthworm gut has remained largely unknown. Tebuconazole enantiomers showed different bioconcentration behaviors in earthworms. The relative abundances of bacteria belonging to Actinobacteriota, Crenarchaeota and Chloroflexi in R-(-)-tebuconazole-treated soil were higher than those in S-(+)-tebuconazole-treated soil at same concentrations. In the earthworm gut, bacteria belonging to Proteobacteria and Bacteroidota exhibited different relative abundances between the S-(+)-tebuconazole and R-(-)-tebuconazole treatments. The numbers and abundances of ARGs in the soil treated with fungicides were higher than those in the control. In earthworm gut, the diversities of ARGs in all treatments were higher than that in the control, and the relative abundances of Aminoglycoside, Chloramphenicol, Multidrug resistance genes and mobile genetic elements (MGEs) in R-(-)-tebuconazole-treated earthworm gut were higher than those in S-(+)-tebuconazole-treated earthworm gut. Most of ARGs showed a significantly positive correlation with MGEs. Based on network analysis, many ARGs may be carried by bacteria belonging to Bacteroidota and Proteobacteria. These results provide valuable information for understanding the enantioselective effect of tebuconazole on the microbiota community and ARGs.
Asunto(s)
Fungicidas Industriales , Microbiota , Oligoquetos , Animales , Antibacterianos/análisis , Fungicidas Industriales/toxicidad , Fungicidas Industriales/análisis , Suelo , Estereoisomerismo , Farmacorresistencia Microbiana/genética , Bacterias/genética , Genes Bacterianos , Proteobacteria/genética , Microbiología del SueloRESUMEN
Maximizing hole-transfer kinetics-usually a rate-determining step in semiconductor-based artificial photosynthesis-is pivotal for simultaneously enabling high-efficiency solar hydrogen production and hole utilization. However, this remains elusive yet as efforts are largely focused on optimizing the electron-involved half-reactions only by empirically employing sacrificial electron donors (SEDs) to consume the wasted holes. Using high-quality ZnSe quantum wires as models, we show that how hole-transfer processes in different SEDs affect their photocatalytic performances. We found that larger driving forces of SEDs monotonically enhance hole-transfer rates and photocatalytic performances by almost three orders of magnitude, a result conforming well with the Auger-assisted hole-transfer model in quantum-confined systems. Intriguingly, further loading Pt cocatalyts can yield either an Auger-assisted model or a Marcus inverted region for electron transfer, depending on the competing hole-transfer kinetics in SEDs.