Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 23942, 2024 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-39397108

RESUMEN

Nontransformed cells form heterotypic cadherin junctions with adjacent transformed cells to inhibit tumor cell growth and motility. Transformed cells must override this form of growth control, called "contact normalization", to invade and metastasize during cancer progression. Heterocellular cadherin junctions between transformed and nontransformed cells are needed for this process. However, specific mechanisms downstream of cadherin signaling have not been clearly elucidated. Here, we utilized a ß-catenin reporter construct to determine if contact normalization affects Wnt signaling in transformed cells. ß-catenin driven GFP expression in Src transformed mouse embryonic cells was decreased when cultured with cadherin competent nontransformed cells compared to transformed cells cultured with themselves, but not when cultured with cadherin deficient nontransformed cells. We also utilized a layered culture system to investigate the effects of oncogenic transformation and contact normalization on gene expression and oncogenic Src kinase mediated phosphorylation events. RNA-Seq analysis found that cadherin dependent contact normalization inhibited the expression of 22 transcripts that were induced by Src transformation, and increased the expression of 78 transcripts that were suppressed by Src transformation. Phosphoproteomic analysis of cells expressing a temperature sensitive Src kinase construct found that contact normalization decreased phosphorylation of 10 proteins on tyrosine residues that were phosphorylated within 1 h of Src kinase activation in transformed cells. Taken together, these results indicate that cadherin dependent contact normalization inhibits Wnt signaling to regulate oncogenic kinase activity and gene expression, particularly PDPN expression, in transformed cells in order to control tumor progression.


Asunto(s)
Cadherinas , Transformación Celular Neoplásica , beta Catenina , Familia-src Quinasas , Cadherinas/metabolismo , Cadherinas/genética , Animales , Fosforilación , Ratones , Familia-src Quinasas/metabolismo , Familia-src Quinasas/genética , beta Catenina/metabolismo , beta Catenina/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/genética , Vía de Señalización Wnt
2.
Nat Commun ; 15(1): 7778, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237586

RESUMEN

Luminescent materials that simultaneously embody bright singlet and triplet excitons hold great potential in optoelectronics, signage, and information encryption. However, achieving high-performance white-light emission is severely hampered by their inherent unbalanced contribution of fluorescence and phosphorescence. Herein, we address this challenge by pressure treatment engineering via the hydrogen bonding cooperativity effect to realize the mixture of n-π*/π-π* transitions, where the triplet state emission was boosted from 7% to 40% in isophthalic acid (IPA). A superior white-light emission based on hybrid fluorescence and phosphorescence was harvested in pressure-treated IPA, and the photoluminescence quantum yield was increased to 75% from the initial 19% (blue-light emission). In-situ high-pressure IR spectra, X-ray diffraction, and neutron diffraction reveal continuous strengthening of the hydrogen bonds with the increase of pressure. Furthermore, this enhanced hydrogen bond is retained down to the ambient conditions after pressure treatment, awarding the targeted IPA efficient intersystem crossing for balanced singlet/triplet excitons population and resulting in efficient white-light emission. This work not only proposes a route for brightening triplet states in organic small molecules, but also regulates the ratio of singlet and triplet excitons to construct high-performance white-light emission.

3.
Curr Res Toxicol ; 7: 100184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39285937

RESUMEN

Croton oil is liquid at room temperature, with a pale-yellow color and spicy odor. It is commonly used in combination with phenol as a chemical peeling agent in dermatology, which reveals its caustic exfoliating effects. Topical use of croton oil at a high dose produces skin irritation, inflammation, swelling, pain, and even tumors. Therefore, croton oil has been widely used for inflammation, pain, and tumor related research, with different animal models having been established. However, mechanistic studies through which croton oil induces skin swelling, injury and activates tissue repair/regeneration are limited. The present study used croton oil to induce mouse ear edema and examined tissue responses 4 h after exposure. To this end, croton oil was applied to the ventral side of mouse ears, followed by tissue collection. Samples were analyzed by hematoxylin and eosin (H&E) staining, toluidine blue staining, and immunohistochemistry staining for myeloperoxidase (MPO) and matrix metalloproteinase-9 (MMP-9). Western blotting and ELISA were also carried out for MMP-9 together with unbiased proteomic analysis using mass-spectrometry. Results from our study demonstrated that as soon as 4 h of exposure to 2.5 % croton oil, the expression levels of MPO and MMP-9 in the dermis significantly increased compared to acetone-treated (vehicle) control ears, as did other inflammatory reactions such as swelling and neutrophil aggregation and infiltration. Subsequently, proteomic analysis confirmed that croton oil treatment resulted in significant upregulation of proteins such as myeloperoxidase (MPO), matrix metalloproteinase-9 (MMP-9), and matrix metalloproteinase-8 (MMP-8) in the ear skin. Interestingly, mouse ears treated with acetone vehicle showed differential expression of 2,478 proteins relative to naïve tissues; among those differentially expressed in acetone-treated samples were members of the phosphatidylinositol-glycan biosynthesis class N, T and U proteins (PIGN, PIGT, and PIGU). Overall, this work confirms the presence of neutrophil-derived MPO and MMP-9 and extends the body of knowledge to show that MMP-8 is also present during croton oil-mediated skin inflammation in the mouse ear; moreover, we find that acetone vehicle is not inert and has effects on the skin that should be considered moving forward.

4.
Sci Adv ; 10(32): eadl1584, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39110797

RESUMEN

Histone acetyltransferases KAT2A and KAT2B are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine Kat2 genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling. Acetyl-proteomics and sequencing of immunoprecipitated double-stranded RNA were used to interrogate the mechanism behind this response, which identified mitochondria-encoded double-stranded RNA as the source of intrinsic interferon signaling. Kat2a and Kat2b therefore play an essential role in regulating mitochondrial functions and maintaining intestinal health.


Asunto(s)
Histona Acetiltransferasas , Interferones , Ratones Noqueados , ARN Bicatenario , Transducción de Señal , Células Madre , Animales , ARN Bicatenario/metabolismo , Ratones , Células Madre/metabolismo , Células Madre/citología , Interferones/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Mitocondrias/metabolismo , Autorrenovación de las Células/genética , Intestinos/citología
5.
Electrophoresis ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39165194

RESUMEN

MicroRNAs (miRNAs) play important roles in posttranscriptional gene regulation. Aberrations in the miRNA levels have been the cause behind various diseases, including periodontitis. Therefore, sensitive, specific, and accurate detection of disease-associated miRNAs is vital to early diagnosis and can facilitate inhibitor screening and drug design. In this study, we developed a label-free, real-time sensing method for the detection of miR31, which has been frequently linked to periodontitis, using an engineered protein nanopore and in the presence of a complementary ssDNA as a molecular probe. Our method is rapid and highly sensitive with nanomolar concentration of miR31 that could be determined in minutes. Furthermore, our sensor showed high selectivity toward the target miR31 sequence even in the presence of interfering nucleic acids. In addition, artificial saliva and human saliva samples were successfully analyzed. Our developed nanopore sensing platform could be used to detect other miRNAs and offers a potential application for the clinical diagnosis of disease biomarkers.

6.
Sci Rep ; 14(1): 19683, 2024 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181937

RESUMEN

This study aims to illustrate epidemiology of comorbid CVD in the real-world clinical setting of patients with psoriasis in China. We used data of adult patients with psoriasis who were registered in the register of China National Clinical Center for Skin and Immune Diseases between August 2020 and September 2021. Psoriasis was clinically diagnosed following the national guidelines. Univariate and multivariate logistic regression models were used to examine the factors associated with comorbid CVD in patients with psoriasis. Of the 11,560 psoriasis patients (age ≥ 18 years, mean age 41.87 years, 64.88% males), 236 were ascertained with CVD, with the overall prevalence being 2.62%. Multivariate logistic regression analysis suggested that the odds ratio (95% confidence interval) of CVD in psoriasis patients was 2.27 (2.03-2.54) for older age (per 10-year increment), 0.65 (0.48-0.90) for female, 2.07 (1.39-3.06) for obesity (BMI ≥ 28 vs. < 24 kg/m2), 2.55 (1.85-2.52) for smoking, 7.63 (5.86-9.94) for hypertension, 4.27 (3.76-4.85) for diabetes, 1.14 (1.00-1.30) for having a history of drug allergy, 2.27 (1.61-3.20) for having family history of psoriasis, and 1.76 (1.16-2.67) for severe disease (severe vs. mild) with a dose-response relationship (Ptrend < 0.001). In patients with psoriasis, comorbid CVD was associated with smoking, obesity, hypertension, diabetes, history of drug allergy, family history of psoriasis, and the psoriasis severity.


Asunto(s)
Enfermedades Cardiovasculares , Comorbilidad , Psoriasis , Sistema de Registros , Humanos , Psoriasis/epidemiología , Psoriasis/complicaciones , Femenino , Masculino , Adulto , China/epidemiología , Enfermedades Cardiovasculares/epidemiología , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Adulto Joven , Hipertensión/epidemiología , Hipertensión/complicaciones , Adolescente , Obesidad/epidemiología , Obesidad/complicaciones
7.
BMC Oral Health ; 24(1): 997, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182086

RESUMEN

OBJECTIVES: To investigate the effect of neutral 10-methacryloyloxydecyl dihydrogen phosphate salt (MDP-Na) on the dentin bond strength and remineralization potential of etch-&-rinse adhesive. METHODS: Two experimental etch-&-rinse adhesives were formulated by incorporating 0 wt% (E0) or 20 wt% (E20) neutral MDP-Na into a basic primer. A commercial adhesive, Adper Single Bond 2 (SB, 3 M ESPE), served as the control. Sixty prepared teeth were randomly allocated into three groups (n = 20) and bonded using either one of the experimental adhesives or SB. Following 24 h of water storage, the bonded specimens were sectioned into resin-dentin sticks, with four resin-dentin sticks obtained from each tooth for microtensile bond strength (MTBS) test. Half of the sticks from each group were immediately subjected to tensile loading using a microtensile tester at a crosshead speed of 1 mm/min, while the other half underwent tensile loading after 6-month incubation in artificial saliva (AS). The degree of conversion (DC) of both the control and experimental adhesives (n = 6 in each group) and the adsorption properties of MDP-Na on the dentin organic matrix (n = 5 in each group) were determined using Fourier-transform infrared spectrometry. Furthermore, the effectiveness of neutral MDP-Na in promoting the mineralization of two-dimensional collagen fibrils and the adhesive-dentin interface was explored using transmission electron microscopy and selected-area electron diffraction. Two- and one-way ANOVA was employed to assess the impact of adhesive type and water storage on dentin bond strength and the DC (α = 0.05). RESULTS: The addition of MDP-Na into the primer increased both the short- and long-term MTBS of the experimental adhesives (p = 0.00). No difference was noted in the DC between the control, E0 and E20 groups (p = 0.366). The MDP-Na remained absorbed on the demineralized dentin even after thorough rinsing. The intra- and extra-fibrillar mineralization of the two-dimensional collagen fibril and dentin bond hybrid layer was confirmed by transmission electron microscopy and selected-area electron diffraction when the primer was added with MDP-Na. CONCLUSIONS: The use of neutral MDP-Na results in high-quality hybrid layer that increase the dentin bond strength of etch-&-rinse adhesive and provides the adhesive with remineralizing capability. This approach may represent a suitable bonding strategy for improving the dentin bond strength and durability of etch-&-rinse adhesive.


Asunto(s)
Recubrimiento Dental Adhesivo , Recubrimientos Dentinarios , Dentina , Metacrilatos , Resistencia a la Tracción , Metacrilatos/química , Humanos , Recubrimiento Dental Adhesivo/métodos , Dentina/ultraestructura , Dentina/efectos de los fármacos , Recubrimientos Dentinarios/química , Remineralización Dental/métodos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Grabado Ácido Dental/métodos , Análisis del Estrés Dental , Técnicas In Vitro , Cementos de Resina/química , Espectroscopía Infrarroja por Transformada de Fourier , Cementos Dentales/química , Propiedades de Superficie
8.
ACS Nano ; 18(34): 23537-23552, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39133543

RESUMEN

Numerous small biomolecules exist in the human body and play roles in various biological and pathological processes. Small molecules are believed not to induce intrafibrillar mineralization alone. They are required to work in synergy with noncollagenous proteins (NCPs) and their analogs, e.g. polyelectrolytes, for inducing intrafibrillar mineralization, as the polymer-induced liquid-like precursor (PILP) process has been well-documented. In this study, we demonstrate that small charged molecules alone, such as sodium tripolyphosphate, sodium citrate, and (3-aminopropyl) triethoxysilane, could directly mediate fibrillar mineralization. We propose that small charged molecules might be immobilized in collagen fibrils to form the polyelectrolyte-like collagen complex (PLCC) via hydrogen bonds. The PLCC could attract CaP precursors along with calcium and phosphate ions for inducing mineralization without any polyelectrolyte additives. The small charged molecule-mediated mineralization process was evidenced by Cryo-TEM, AFM, SEM, FTIR, ICP-OES, etc., as the PLCC exhibited both characteristic features of collagen fibrils and polyelectrolyte with increased charges, hydrophilicity, and density. This might hint at one mechanism of pathological biomineralization, especially for understanding the ectopic calcification process.


Asunto(s)
Citrato de Sodio , Citrato de Sodio/química , Citrato de Sodio/metabolismo , Animales , Humanos , Citratos/química , Colágeno/química , Colágeno/metabolismo , Calcinosis/metabolismo , Calcinosis/patología , Propilaminas/química
9.
Reg Anesth Pain Med ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960590

RESUMEN

BACKGROUND: Dexamethasone palmitate (DEP), a prodrug of dexamethasone (DEX), is a synthetic corticosteroid medication distinguished by the inclusion of a fatty acid component known as palmitate. This study introduces DEP as a novel therapeutic option for spinal epidural injection, aiming to provide safer and longer-lasting pain relief as an alternative to for patients with spinal stenosis. METHODS: 40 rats were randomly divided into four groups: those receiving epidural administration of normal saline (NS), and DEP in the lumbar spinal stenosis (LSS) model, and non-model rats receiving epidural NS administration. Paw withdrawal thresholds to mechanical stimulation and motor function (neurogenic intermittent claudication) were observed for up to 21 days. Hematology and blood chemistry analyses were performed 1 week after drug therapy. Tissue samples were collected for steroid pathology examination to evaluate adhesion degree, perineural area inflammation, and chromatolysis in the dorsal root ganglion (DRG), and adrenal gland. RESULTS: The DEX and DEP groups demonstrated significant recovery from mechanical allodynia and motor dysfunction after 2 weeks of drug therapy (p<0.001). However, by the third week, the effect of DEX started to diminish while the effect of DEP persisted. Furthermore, the DEP group exhibited reduced fibrosis and less chromatolysis than the NS group. No steroid overdose or toxin was observed in any group. CONCLUSION: The epidural administration of DEP demonstrated therapeutic efficacy in reducing allodynia and hyperalgesia resulting from chronic DRG compression, thus offering prolonged pain relief. These findings underscore the potential of DEP as a promising treatment alternative for pain associated with LSS, serving as a viable substitute for .

10.
Front Cell Dev Biol ; 12: 1423208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050895

RESUMEN

The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms. In mammals, mitochondria exhibit a significant abundance of polyP, and both our research and that of others have already highlighted its potent regulatory effect on bioenergetics. Given the intimate connection between energy metabolism and protein homeostasis, the involvement of polyP in proteostasis has also been demonstrated in several organisms. For example, polyP is a bacterial primordial chaperone, and its role in amyloidogenesis has already been established. Here, using mammalian models, our study reveals that the depletion of mitochondrial polyP leads to increased protein aggregation within the organelle, following stress exposure. Furthermore, mitochondrial polyP is able to bind to proteins, and these proteins differ under control and stress conditions. The depletion of mitochondrial polyP significantly affects the proteome under both control and stress conditions, while also exerting regulatory control over gene expression. Our findings suggest that mitochondrial polyP is a previously unrecognized, and potent component of mitochondrial proteostasis.

11.
Biomed Pharmacother ; 178: 117155, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39047422

RESUMEN

Chronic dermatitis is a disease with large unmet need for pharmacological improvement. Dermatitis conditions are maintained and exacerbated by various cytokine actions in the context of inflammation. Interleukin 6 signal transducer (Il6st), also known as glycoprotein 130 (Gp130), is a key component for surface reception of a multitude of cytokines and transduction and amplification of their pro-inflammatory signals. We hypothesized accordingly that pharmacological inhibition of Il6st can alter dermatitis pathology. Treatment with SC-144 and bazedoxifene, two representative small molecule Il6st inhibitors with different binding modes led to moderate but significant improvement of skin conditions in a 1-chloro-2,4-dinitrobenzene animal model. Part of cytokine expressions indicating the dermatological index were normalized particularly when treated with SC-144. Pruritic behaviors were blunted, also possibly giving limited contribution to disease improvement. In psoriatic skin and itch of an imiquimod animal model, those two treatments appeared to be relatively moderate. Collectively, pharmacological inhibition of Il6st seems to lessen pathological irritation. Inversely, this experimental attempt newly implies that Il6st participates in pathological mechanisms. In conclusion, we suggest Il6st as a novel target for improving dermatitis, and that agents with suitable efficacy and safety for its modulation are translatable.


Asunto(s)
Receptor gp130 de Citocinas , Prurito , Animales , Prurito/tratamiento farmacológico , Prurito/metabolismo , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Ratones , Modelos Animales de Enfermedad , Dermatitis/tratamiento farmacológico , Dermatitis/metabolismo , Dermatitis/patología , Indoles/farmacología , Indoles/uso terapéutico , Masculino , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo , Femenino , Citocinas/metabolismo , Psoriasis/tratamiento farmacológico
12.
Talanta ; 276: 126276, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38796995

RESUMEN

Ribonuclease A (RNase A) plays significant roles in several physiological and pathological conditions and can be used as a valuable diagnostic biomarker for human diseases such as myocardial infarction and cancer. Hence, it is of great importance to develop a rapid and cost-effective method for the highly sensitive detection of RNase A. The significance of RNase A assay is further enhanced by the growing attention from the biotechnology and pharmaceutical industries to develop RNA-based vaccines and drugs in large part as a result of the successful development of mRNA vaccines in the COVID-19 pandemic. Herein, we report a label-free method for the detection of RNase A by monitoring its proteolytic cleavage of an RNA substrate in a nanopore. The method is ultra-sensitive with the limit of detection reaching as low as 30 fg per milliliter. Furthermore, sensor selectivity and the effects of temperature, incubation time, metal ion, salt concentration on sensor sensitivity were also investigated.


Asunto(s)
Nanoporos , Ribonucleasa Pancreática , Ribonucleasa Pancreática/análisis , Ribonucleasa Pancreática/metabolismo , Ribonucleasa Pancreática/química , Humanos , Límite de Detección , Técnicas Biosensibles/métodos , SARS-CoV-2 , Pruebas de Enzimas/métodos , COVID-19/virología , COVID-19/diagnóstico
13.
Front Mol Neurosci ; 17: 1160435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783903

RESUMEN

The function of peripheral nociceptors, the neurons that relay pain signals to the brain, are frequently tuned by local and systemic modulator substances. In this context, neurohormonal effects are emerging as an important modulatory mechanism, but many aspects remain to be elucidated. Here we report that gonadotropin-releasing hormone (GnRH), a brain-specific neurohormone, can aggravate pain by acting on nociceptors in mice. GnRH and GnRHR, the receptor for GnRH, are expressed in a nociceptor subpopulation. Administration of GnRH and its analogue, localized for selectively affecting the peripheral neurons, deteriorated mechanical pain, which was reproducible in neuropathic conditions. Nociceptor function was promoted by GnRH treatment in vitro, which appears to involve specific sensory transient receptor potential ion channels. These data suggest that peripheral GnRH can positively modulate nociceptor activities in its receptor-specific manner, contributing to pain exacerbation. Our study indicates that GnRH plays an important role in neurohormonal pain modulation via a peripheral mechanism.

14.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766142

RESUMEN

Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations and temperature compensation are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although clock (clk) gene encodes the critical activator of clock gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. We therefore sought to investigate whether clk exhibits AS in response to temperature and the functional changes of the differentially spliced transcripts. We observed that clk transcripts indeed undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative clk transcript, hereinafter termed clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is among the four amino acids deleted in CLK-cold protein. Using a combination of transgenic fly, tissue culture, and in vitro experiments, we demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing CLK occupancy at clock gene promoters. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature, which can be explained by the higher amounts of CLK-cold isoforms that lack S13 residue. This study provides new insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.

15.
Biochem Biophys Res Commun ; 710: 149881, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38583233

RESUMEN

Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, evidently mediated by a cysteine residue in the carboxy region of the protein. In contrast to MASL, members of the other group do not dimerize under nonreducing conditions. These data also indicate that MASL is composed of 4 isoforms with an identical amino acid sequence, but unique glycosylation sites. We also produced a novel recombinant soluble human PDPN receptor (shPDPN) with 17 threonine residues glycosylated with sialic acid moieties with potential to act as a ligand trap that inhibits OSCC cell growth and motility. In addition, we report here that MASL targets PDPN with very strong binding kinetics in the nanomolar range. Moreover, we confirm that MASL can inhibit the growth and motility of human oral squamous cell carcinoma (OSCC) cells that express the PDPN receptor. Taken together, these data characterize M. amurensis lectins into two major groups based on their intrinsic properties, clarify the composition of MASL and its subunit isoform sequence and glycosylation sites, define sialic acid modifications on the PDPN receptor and its ability to act as a ligand trap, quantitate MASL binding to PDPN with KD in the nanomolar range, and verify the ability of MASL to serve as a potential anticancer agent.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Ácido N-Acetilneuramínico/metabolismo , Maackia/química , Maackia/metabolismo , Neoplasias de la Boca/patología , Cromatografía Liquida , Ligandos , Espectrometría de Masas en Tándem , Lectinas/farmacología , Antineoplásicos/farmacología , Análisis de Secuencia , Movimiento Celular
16.
Chem Biodivers ; 21(6): e202301509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594219

RESUMEN

Neurodegenerative diseases are characterized by the progressive loss of selectively vulnerable populations of neurons, and many factors are involved in its causes. Neurotoxicity and oxidative stress, are the main related factors. The octapeptide Ile-Ile-Ala-Val-Glu-Ala-Gly-Cys (IEC) was identified from the microalgae Isochrysis zhanjiangensis and exhibited potential anti-oxidative stress activity. In this study, the stability of α-synaptic protein binding to IEC was modeled using molecular dynamics, and the results indicated binding stabilization within 60 ns. Oxidative stress in neurons is the major cause of α-synaptic protein congestion. Therefore, we next evaluated the protective effects of IEC against oxidative stress and neurotoxicity in 6-ohdainduced Parkinson's disease (PD) model SH-SY5Y cells in vitro. In oxidative stress, IEC appeared to increase the expression of the antioxidant enzymes HO-1 and GPX through the antioxidant pathway of Nrf2, and molecular docking of IEC with Nrf2 and GPX could generate hydrogen bonds. Regarding apoptosis, IEC protected cells by increasing the Bcl-2/Bax ratio, inhibiting the caspase cascade, acting on p53, and modulating the Jak2/Stat3 pathway. The results indicated that IEC exerted neuroprotective effects through the inhibition of α-synaptic protein aggregation and antioxidant activity. Therefore, microalgal peptides have promising applications in the prevention and treatment of neurodegenerative diseases.


Asunto(s)
Janus Quinasa 2 , Microalgas , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Oxidopamina , Factor de Transcripción STAT3 , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Microalgas/química , Microalgas/metabolismo , Oxidopamina/farmacología , Oxidopamina/antagonistas & inhibidores , Hemo-Oxigenasa 1/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Oligopéptidos/farmacología , Oligopéptidos/química , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
17.
Adv Mater ; 36(27): e2403281, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661081

RESUMEN

Interpenetrated metal-organic frameworks (MOFs) with nonaromatic ligands provide a unique platform for adsorption, catalysis, and sensing applications. However, nonemission and the lack of optical property tailoring make it challenging to fabricate smart responsive devices with nonaromatic interpenetrated MOFs based on ligand-centered emission. In this paper, the pressure-induced aggregation effect is introduced in nonaromatic interpenetrated Zn4O(ADC)4(Et3N)6 (IRMOF-0) nanocrystals (NCs), where carbonyl groups aggregation results in O─O distances smaller than the sum of the van der Waals radii (3.04 Å), triggering the photoluminescence turn-on behavior. It is noteworthy that the IRMOF-0 NCs display an ultrabroad emission tunability of 130 nm from deep blue (440 nm) to yellow (570 nm) upon release to ambient conditions at different pressures. The eventual retention of through-space n-π* interactions in different degrees via pressure treatment is primarily responsible for achieving a controllable multicolor emission behavior in initially nonemissive IRMOF-0 NCs. The fabricated multicolor phosphor-converted light-emitting diodes based on the pressure-treated IRMOF-0 NCs exhibit excellent thermal, chromaticity, and fatigue stability. The proposed strategy not only imparts new vitality to nonaromatic interpenetrated MOFs but also offers new perspectives for advancements in the field of multicolor displays and daylight illumination.

18.
J Pain Res ; 17: 1369-1380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38600989

RESUMEN

Objective: To create a deep learning (DL) model that can accurately detect and classify three distinct types of rat dorsal root ganglion neurons: normal, segmental chromatolysis, and central chromatolysis. The DL model has the potential to improve the efficiency and precision of neuron classification in research related to spinal injuries and diseases. Methods: H&E slide images were divided into an internal training set (80%) and a test set (20%). The training dataset was labeled by two pathologists using pre-defined grades. Using this dataset, a two-component DL model was developed with the first component being a convolutional neural network (CNN) that was trained to detect the region of interest (ROI) and the second component being another CNN used for classification. Results: A total of 240 lumbar dorsal root ganglion (DRG) pathology slide images from rats were analyzed. The internal testing results showed an accuracy of 93.13%, and the external dataset testing demonstrated an accuracy of 93.44%. Conclusion: The DL model demonstrated a level of agreement comparable to that of pathologists in detecting and classifying normal and segmental chromatolysis neurons, although its agreement was slightly lower for central chromatolysis neurons. Significance: DL in improving the accuracy and efficiency of pathological analysis suggests that it may have a role in enhancing medical decision-making.

19.
Curr Issues Mol Biol ; 46(3): 2480-2496, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534773

RESUMEN

In the present work, we evaluated the antifungal activities of two novel ebselen analogs, N-allyl-benzisoselenazol-3(2H)-one (N-allyl-bs) and N-3-methylbutylbenzisoselenazol-3(2H)-one (N-3mb-bs). Colorimetric and turbidity assays were performed to determine the minimum inhibitory concentration (MIC) of these compounds in S1 (fluconazole-sensitive) and S2 (fluconazole-resistant) strains of C. albicans. N-3mb-bs was more active than the N-allyl-bs compound. It is noteworthy that the concentration of N-3mb-bs observed to inhibit fungal growth by 50% (18.2 µM) was similar to the concentration observed to inhibit the activity of the yeast plasma membrane H+-ATPase (Pma1p) by 50% (19.6 µM). We next implemented a mouse model of vulvovaginal candidiasis (VVC) using the S1 strain and examined the mouse and yeast proteins present in the vaginal lavage fluid using proteomics. The yeast proteins detected were predominately glycolytic enzymes or virulence factors associated with C. albicans while the mouse proteins present in the lavage fluid included eosinophil peroxidase, desmocollin-1, and gasdermin-A. We then utilized the N-3mb-bs compound (12.5 mg/kg) in the mouse VVC model and observed that it significantly reduced the vaginal fungal burden, histopathological changes in vagina tissue, and expression of myeloperoxidase (MPO). All in all, the present work has identified a potentially promising drug candidate for VVC treatment.

20.
J Clin Invest ; 134(10)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530355

RESUMEN

The mammalian SUMO-targeted E3 ubiquitin ligase Rnf4 has been reported to act as a regulator of DNA repair, but the importance of RNF4 as a tumor suppressor has not been tested. Using a conditional-knockout mouse model, we deleted Rnf4 in the B cell lineage to test the importance of RNF4 for growth of somatic cells. Although Rnf4-conditional-knockout B cells exhibited substantial genomic instability, Rnf4 deletion caused no increase in tumor susceptibility. In contrast, Rnf4 deletion extended the healthy lifespan of mice expressing an oncogenic c-myc transgene. Rnf4 activity is essential for normal DNA replication, and in its absence, there was a failure in ATR-CHK1 signaling of replication stress. Factors that normally mediate replication fork stability, including members of the Fanconi anemia gene family and the helicases PIF1 and RECQL5, showed reduced accumulation at replication forks in the absence of RNF4. RNF4 deficiency also resulted in an accumulation of hyper-SUMOylated proteins in chromatin, including members of the SMC5/6 complex, which contributes to replication failure by a mechanism dependent on RAD51. These findings indicate that RNF4, which shows increased expression in multiple human tumor types, is a potential target for anticancer therapy, especially in tumors expressing c-myc.


Asunto(s)
Replicación del ADN , Proteínas Proto-Oncogénicas c-myc , Animales , Humanos , Ratones , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Linfocitos B/metabolismo , Linfocitos B/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Inestabilidad Genómica , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Sumoilación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA