Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Fundam Res ; 4(1): 131-139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38933849

RESUMEN

Solar-driven CO2-to-fuel conversion assisted by another major greenhouse gas CH4 is promising to concurrently tackle energy shortage and global warming problems. However, current techniques still suffer from drawbacks of low efficiency, poor stability, and low selectivity. Here, a novel nanocomposite composed of interconnected Ni/MgAlO x nanoflakes grown on SiO2 particles with excellent spatial confinement of active sites is proposed for direct solar-driven CO2-to-fuel conversion. An ultrahigh light-to-fuel efficiency up to 35.7%, high production rates of H2 (136.6 mmol min-1g- 1) and CO (148.2 mmol min-1g-1), excellent selectivity (H2/CO ratio of 0.92), and good stability are reported simultaneously. These outstanding performances are attributed to strong metal-support interactions, improved CO2 absorption and activation, and decreased apparent activation energy under direct light illumination. MgAlO x @SiO2 support helps to lower the activation energy of CH* oxidation to CHO* and improve the dissociation of CH4 to CH3* as confirmed by DFT calculations. Moreover, the lattice oxygen of MgAlO x participates in the reaction and contributes to the removal of carbon deposition. This work provides promising routes for the conversion of greenhouse gasses into industrially valuable syngas with high efficiency, high selectivity, and benign sustainability.

2.
EClinicalMedicine ; 73: 102656, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38828130

RESUMEN

Background: Gastrointestinal stromal tumors (GISTs) represent the most prevalent type of subepithelial lesions (SELs) with malignant potential. Current imaging tools struggle to differentiate GISTs from leiomyomas. This study aimed to create and assess a real-time artificial intelligence (AI) system using endoscopic ultrasonography (EUS) images to differentiate between GISTs and leiomyomas. Methods: The AI system underwent development and evaluation using EUS images from 5 endoscopic centers in China between January 2020 and August 2023. EUS images of 1101 participants with SELs were retrospectively collected for AI system development. A cohort of 241 participants with SELs was recruited for external AI system evaluation. Another cohort of 59 participants with SELs was prospectively enrolled to assess the real-time clinical application of the AI system. The AI system's performance was compared to that of endoscopists. This study is registered with Chictr.org.cn, Number ChiCT2000035787. Findings: The AI system displayed an area under the curve (AUC) of 0.948 (95% CI: 0.921-0.969) for discriminating GISTs and leiomyomas. The AI system's accuracy (ACC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) reached 91.7% (95% CI 87.5%-94.6%), 90.3% (95% CI 83.4%-94.5%), 93.0% (95% CI 87.2%-96.3%), 91.9% (95% CI 85.3%-95.7%), and 91.5% (95% CI 85.5%-95.2%), respectively. Moreover, the AI system exhibited excellent performance in diagnosing ≤20 mm SELs (ACC 93.5%, 95% CI 0.900-0.969). In a prospective real-time clinical application trial, the AI system achieved an AUC of 0.865 (95% CI 0.764-0.966) and 0.864 (95% CI 0.762-0.966) for GISTs and leiomyomas diagnosis, respectively, markedly surpassing endoscopists [AUC 0.698 (95% CI 0.562-0.834) for GISTs and AUC 0.695 (95% CI 0.546-0.825) for leiomyomas]. Interpretation: We successfully developed a real-time AI-assisted EUS diagnostic system. The incorporation of the real-time AI system during EUS examinations can assist endoscopists in rapidly and accurately differentiating various types of SELs in clinical practice, facilitating improved diagnostic and therapeutic decision-making. Funding: Science and Technology Commission Foundation of Shanghai Municipality, Science and Technology Commission Foundation of the Xuhui District, the Interdisciplinary Program of Shanghai Jiao Tong University and the Research Funds of Shanghai Sixth people's Hospital.

3.
J Air Waste Manag Assoc ; 74(1): 25-38, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37843255

RESUMEN

E-waste is a valuable secondary resource containing numerous toxic substances and high-value components. If improperly handled, it will cause severe environmental pollution. Therefore, efficient recycling of this material can reduce environmental pollution. However, after crushing, fine crushing, and magnetic separation, a substantial quantity of fragmented non-magnetic materials with high value, such as copper andg aluminum, remain. Refrigerators, as typical e-waste, have a similar composition to fragmented non-magnetic materials. Consequently, this paper focuses on the issues of low efficiency, environmental pollution, and resource waste in sorting fragmented non-magnetic materials from waste refrigerators. This paper constructs a data set of fragmented non-magnetic materials of refrigerators, augments the data set, and identifies fragmented non-magnetic materials of refrigerators using a computer vision-based deep learning method. In this study, YOLOv5s is used as the benchmark model. The CBAM module is added to the backbone to enable intelligent identification and sorting of fragmented non-magnetic materials in refrigerators. The final identification efficiency of waste refrigerators meets the requirements of industrial applications, with an accuracy rate of 98.3%, a recall rate of 96.8%, and an average accuracy of 98%. Based on the similarity of the composition of e-waste fragmented materials, this model sorting method can be applied to sorting additional e-waste fragmented materials. Furthermore, it provides the theoretical foundation for promoting e-waste resourcefulness.Implications: This paper proposes a recognition model based on YOLOv5s to solve the problems of low sorting efficiency, environmental pollution, harm to health, and resource waste of non-magnetic crushed material from refrigerators. The recognition model principally addresses the following issues: a deep learning model is developed for recognition and sorting to improve e-waste recognition and sorting efficiency. Concerning the issue of environmental benefits in an ecological environment, a vision-based automatic identification method is proposed to sort harmful waste, such as foam, to preserve the ecological environment. In response to the problem of resource waste, this project improves the purity of precious metals, resulting in a recovery rate of 99.1% for copper and 96.44% for aluminum. In other words, the cost of recovering metals has increased. The identification model of non-magnetic crushed material in refrigerators satisfies production identification and sorting requirements. In addition, the method has application and promotion value, sorting a theoretical foundation and method for identifying and classifying e-waste.


Asunto(s)
Cobre , Residuos Electrónicos , Aluminio , Reciclaje/métodos , Metales , Residuos Electrónicos/análisis , Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA