RESUMEN
Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.
Asunto(s)
Arsénico , Cadmio , Carbón Orgánico , Magnesio , Oryza , Contaminantes del Suelo , Suelo , Oryza/química , Cadmio/análisis , Cadmio/química , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Arsénico/análisis , Suelo/química , Magnesio/química , Hierro/química , Restauración y Remediación Ambiental/métodosRESUMEN
Phytoremediation is an efficient technology for the removal of herbicide atrazine (ATZ) contamination in water bodies, but its ability to reduce ATZ under combined pollution remains unclear, especially ATZ co-existing with the emerging pollutant graphene oxide (GO) that may have potential effects on ATZ fate, plants and microbes. Herein, we investigated the phytoremediation potential of an emergent plant (Iris pseudacorus) for ATZ and the response of bacteria in a hydroponic system with and without GO. The results showed that plants enhanced ATZ dissipation in water with the increased removal rate by a factor of 1.7-4.0. GO restricted ATZ uptake by plants, but favored ATZ bioconcentration in cell walls. The plant contributed most to changes in the bacterial communities, decreasing the alpha diversity, while enriching the functional categories involving in amino acid and carbohydrate metabolisms. These findings indicated that I. pseudacorus can be employed as an effective candidate of phytoremediation for ATZ co-existing with GO at environmentally relevant concentrations, tending to recruit bacteria with plant stress tolerance and growth-promotion activities more than with ATZ degradation activities; GO exerted a mitigating effect on ATZ stress improving the barrier function of cell walls, but decreased the contribution of plants to ATZ removal.
RESUMEN
BACKGROUND AND AIMS: Nitrogen enrichment affects biodiversity, plant functional traits and ecosystem functions. However, the direct and indirect effects of nitrogen addition and biodiversity on the links between plant traits and ecosystem functions have been largely overlooked, even though multidimensional characteristics of plant functional traits are probably critical predictors of ecosystem functions. METHODS: To investigate the mechanism underlying the links between plant trait identity, diversity, network topology and above- and below-ground biomass along a plant species richness gradient under different nitrogen addition levels, a common garden experiment was conducted in which those driving factors were manipulated. KEY RESULTS: The study found that nitrogen addition increased above-ground biomass but not below-ground biomass, while species richness was positively associated with above- and below-ground biomass. Nitrogen addition had minor effects on plant trait identity and diversity, and on the connectivity and complexity of the trait networks. However, species richness increased above-ground biomass mainly by increasing leaf trait diversity and network modularity, and enhanced below-ground biomass through an increase in root nitrogen concentration and network modularity. CONCLUSIONS: The results demonstrate the mechanistic links between community biomass and plant trait identity, diversity and network topology, and show that the trait network architecture could be an indicator of the effects of global changes on ecosystem functions as importantly as trait identity and diversity.
Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Plantas , NitrógenoRESUMEN
Pennisetum grasses (P. purpureum Schumach. 'Purple', P. alopecuroides (L.) Spreng. 'Liren' and P. alopecuroides (L.) Spreng. 'Changsui'), and a cadmium (Cd) hyperaccumulator (Thlaspi caerulescens J.Presl & C.Presl), were grown in soil with four Cd addition levels of 0, 2, 20 and 200 mg/kg. Toxicity symptoms were not observed although growth of all plants decreased as Cd addition increased. Shoot bioconcentration factor (BCFS), the translocation factor (TF) and shoot accumulation of Cd for most plants first increased and then declined as Cd concentrations increased. In contrast, the root bioconcentration factor (BCFR) for T. caerulescens declined and root Cd accumulation for T. caerulescens and two P. alopecuroides cultivars increased consistently as Cd levels increased. P. purpureum had the largest biomass with shoot Cd accumulation similar to that of T. caerulescens, despite lower foliar Cd concentration. Although shoot Cd concentrations of two P. alopecuroides cultivars were lower than for P. purpureum, root Cd concentrations were greater. P. purpureum had Cd BCFS and TF (> 1) at 2- and 20-mg/kg Cd addition treatments, similar to T. caerulescens. P. alopecuroides cultivars had Cd BCFR (> 1) and TF (< 1) at all Cd levels. Roots did not affect rhizosphere pH. However, concentrations of acid extractable Cd in rhizosphere soil were lower than those of corresponding non-rhizosphere soil at all Cd levels for T. caerulescens and P. purpureum; T. caerulescens and P. purpureum did not affect less bioavailable Cd fractions. Concentrations of acid extractable Cd in the rhizosphere of the P. alopecuroides cultivars were not reduced at any Cd level. Differences in Cd accumulation among the three Pennisetum grasses were mainly attributable to root biomass and Cd TFs rather than rhizosphere Cd mobility.
Asunto(s)
Pennisetum , Contaminantes del Suelo , Thlaspi , Biodegradación Ambiental , Cadmio/análisis , Raíces de Plantas/química , Rizosfera , Suelo , Contaminantes del Suelo/análisisRESUMEN
The remediation potential of large biomass energy grasses in cadmium-contaminated soil remains ambiguous. A field experiment was carried out in a cadmium-contaminated farmland using two energy grasses and two control plants. The two energy grasses were hybrid pennisetum (Pennisetum americanum×P. purpureum, PAP) and purple elephant grass (P. purpureum 'Purple', PPP), and the two control plants were Iris lactea var. chinensis (ILC) and a cadmium hyperaccumulator, Noccaea caerulescens (NC). The results showed that the aboveground biomass of PAP was the largest among the four plants, and 126 and 36 times that of NC and ILC, respectively, but no significant difference with that of PPP. The concentrations of cadmium and zinc in the shoots and roots of NC were significantly higher than in the other plants. Zinc concentrations in the shoots and roots of ILC were lower than in the other plants, while cadmium concentrations were significantly higher than in PAP and PPP (P<0.05). The amounts of cadmium and zinc accumulated in the shoots of PPP were the highest among the four plants, while cadmium concentrations in the shoots and roots of PPP were significantly lower than in ILC and NC (P<0.05). Cadmium amounts accumulated in PPP shoots were 7.0 and 4.1 times that of ILC and NC, respectively. Zinc amounts accumulated in PPP shoots were 41 and 11 times that of ILC and NC, respectively (P<0.05). Cadmium accumulation in the shoots of PAP was 19.4% lower than in PPP, and zinc accumulation had no significant difference with that of PPP. NC, having a bioconcentration factor of shoot (BCFS) and a translocation factor (TF) for cadmium and zinc both larger than 1, is usable for phytoextraction of soils contaminated by cadmium and zinc. ILC, having a bioconcentration factor of root (BCFR) larger than 1 and a TF lower than 1 for cadmium, is usable for the phytostabilization of soils contaminated by cadmium. PPP, having a BCFR larger than 1 and a TF lower than 1 for zinc, can be used in the phytostabilization of soils contaminated by zinc. Under field conditions, PPP and PAP showed great potential for the extraction and removal of cadmium and zinc from soil due to their large biomass and ability to produce economic benefits, have good application prospects.
Asunto(s)
Cadmio , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis , Zinc/análisisRESUMEN
The impacts of boron (B) root application and foliar spray on arsenic (As) uptake, translocation, and efflux by/in rice seedlings (Oryza sativa L.) were investigated in three hydroponic experiments. The addition of B to culture medium did not alter concentrations of arsenite (As[â ¢]), arsenate (As[â ¤]), and total As, nor did it alter transfer coefficients or uptake efficiency of As in rice seedlings under either As(â ¢) or As(â ¤) exposure. Foliar B supply increased shoot B concentrations 15.8-fold, and decreased root As concentrations and As uptake efficiency by 20.9% and 18.0% under As(â ¤) treatment, and by 12.6% and 13.8% under As(â ¢) treatment, respectively, yet did not significantly decrease shoot As concentrations (P>0.05). Interestingly, foliar B supply reduced root B concentrations by up to 47.1% under exposure to As(â ¤) but not As(â ¢), and corresponding root B concentrations were 85.3% higher in As(â ¤) treatment than in As(â ¢) treatment on average (P<0.05). Both total As and As(â ¤) concentrations were positively related to B concentration in rice roots under As(â ¤) treatment following foliar B supply (P<0.05). Rice seedlings extruded 105.2% more As after As(â ¢)-pretreatment than after As(â ¤)-pretreatment. Foliar B supply increased the amount of As excreted by As(â ¢)-pretreated rice root by 14.0%-16.9% (P>0.05), and had no effect on the As efflux of As(â ¤)-pretreatment seedlings. A range of 45.9%-70.7% of root As was excreted to solution during one week. These results indicate that the root application of B at four times the concentration of As can slightly decrease As accumulation by rice, whereas foliar B supply is conducive to a decline in As acquisition by rice roots. It is likely that the B channel is at least not the main pathway for As(â ¢) entering into rice roots, and the As(â ¤) distribution mechanism in rice plants may be shared with that of B.
Asunto(s)
Arsénico/metabolismo , Boro/administración & dosificación , Oryza/metabolismo , Plantones/metabolismo , Boro/química , Hidroponía , Hojas de la Planta , Raíces de PlantasRESUMEN
Atrazine is frequently detected in surface runoff and poses a potential threat to the environment. Grass hedges may minimize runoff loss of atrazine from crop fields. Therefore, the effectiveness of two grass hedges (Melilotus albus and Pennisetum alopecuroides) in controlling atrazine runoff was investigated using simulated rainfall on lands at different slope gradients (15 and 20%) in northern China. Results showed that a storm (40 mm in 1 h), occurring 4 h after atrazine application, caused a loss of 3% of the applied amount. Atrazine loss under 20% slope was significantly greater than that under 15% slope in control plots. Atrazine exports associated with the water fraction accounted for the majority of total loss. Pennisetum hedges were more efficient in controlling atrazine loss with runoff compared to Melilotus hedges. No significant difference in the capacity of grass hedges to reduce atrazine exports was observed between 15 and 20% slopes. These findings suggest grass hedges are effective in minimizing atrazine runoff in northern China, and Pennisetum hedges should be preferentially used on sloping croplands in similar climatic regions.
Asunto(s)
Atrazina/análisis , Contaminantes Químicos del Agua/análisis , China , Herbicidas/análisis , Poaceae , Suelo , Movimientos del AguaRESUMEN
Arsenic (As) removal through microbially driven biovolatilization can be explored as a potential method for As bioremediation. However, its effectiveness needs to be improved. Biostimulation with organic matter amendment and bioaugmentation with the inoculation of genetic engineered bacteria could be potential strategies for As removal and site remediation. Here, the experiments were conducted to evaluate the impacts of rice straw and biochar amendment, inoculation of genetic engineered Pseudomonas putida KT2440 (GE P. putida) with high As volatilization activity, on microbial mediated As volatilization and removal from three different arseniferous soils. In general, the addition of rice straw (5%) significantly enhanced As methylation and volatilization in comparison with corresponding non-amended soils. Biochar amendments and inoculation of the GE P. putida increased As methylation and volatilization, respectively, but less than that of rice straw addition. The effectiveness of As volatilizations are quite different in the various paddy soils. The combined amendments of rice straw and GE P. putida exhibited the highest As removal efficiency (483.2 µg/kg/year) in Dayu soil, with 1.2% volatilization of the total As annually. The highest water-soluble As concentration (0.73 mg/kg) in this soil could be responsible for highest As volatilization besides the rice straw and bacteria in this soil.
Asunto(s)
Arsénico/metabolismo , Biodegradación Ambiental , Pseudomonas putida/metabolismo , Contaminantes del Suelo/metabolismo , Carbón Orgánico , Metilación , Oryza , Suelo/química , VolatilizaciónRESUMEN
Biochar produced from rice straw (RC) and maize stalk (MC) was amended to the heavy metal-contaminated soil to investigate the effects of different biochar feedstock and particle size (fine, moderate, coarse) on the accumulation of Cd, Zn, Pb, and As in Brassica chinensis L. (Chinese cabbage). The concentrations of Cd, Zn, and Pb in shoot were decreased by up to 57, 75, and 63%, respectively, after biochar addition (4%). Only MC decreased As concentration in B. chinensis L. shoots by up to 61%. Biochar treatments significantly decreased NH4NO3-extractable concentrations of Cd, Zn, and Pb in soil by 47-62, 33-66, and 38-71%, respectively, yet increased that of As by up to 147%. Amendment of RC was more effective on immobilizing Cd, Zn, and Pb, but mobilizing soil As, than MC. A decrease in biochar particle size greatly contributed to the immobilization of Cd, Zn, and Pb in soil and thereby the reduction of their accumulations in B. chinensis L. shoots, especially RC. Increases in soil pH and extractable P induced by biochar addition contributed to the sequestration of Cd, Zn, and Pb and the mobilization of As. Shoot biomass, root biomass, and root system of B. chinensis L. were enhanced with biochar amendments, especially RC. This study indicates that biochar addition could potentially decrease Cd, Zn, Pb, and As accumulations in B. chinensis L., and simultaneously increase its yield. A decrease in biochar particle size is favorable to improve the immobilization of heavy metals (except As). The reduction in Cd, Zn, Pb, and As levels in B. chinensis L. shoots by biochar amendment could be mainly attributed to a function of heavy metal mobility in soil, plant translocation factor, and root uptake.
Asunto(s)
Arsénico/análisis , Brassica/química , Carbón Orgánico/química , Metales Pesados/análisis , Oryza/química , Contaminantes del Suelo/análisis , Zea mays/química , Biomasa , Brassica/crecimiento & desarrollo , Cadmio/análisis , Plomo/análisis , Tamaño de la Partícula , Suelo/química , Propiedades de Superficie , Zinc/análisisRESUMEN
Greenhouse experiments were conducted to investigate the influence of rice straw biochar (RSB) on soil cadmium (Cd) availability and accumulation in lettuce. The RSB was applied either in bands or broadcast in the test site of four greenhouses with soil Cd concentrations ranging from 1.70-3.14 µg g-1. Biochar doses applied in bands were half of those broadcast. The Cd levels in the shoots of lettuce were observed to be reduced by up to 57% with increasing RSB application rate (0, 6, 12, 18 t ha-1). Following RSB application, shoot Cd concentrations of lettuce were reduced to below the Chinese threshold value set for food, and hazard quotients for Cd associated with vegetable consumption were reduced from 0.70-1.11 to 0.42-0.65. A decrease in soil bulk density (11%) and increases in water holding capacity (16%), available phosphorus (30%), available potassium (197%), and lettuce yield (15%) were observed after RSB application. Multiple linear regression analysis suggested that the soil extractable Cd level (but not biomass dilution) and soil bulk density, as influenced by RSB addition, were the dominant contributors to the shoot Cd levels in lettuce and lettuce yield, respectively. These results highlight the potential for RSB to mitigate the phytoaccumulation of Cd and thereby to reduce human exposure from vegetable consumption. Application of biochar in band, rather than broadcasting over the entire area, represents an opportunity to halve the biochar cost while retaining a good remediation effect.
Asunto(s)
Cadmio/análisis , Carbón Orgánico/química , Lactuca/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Suelo/química , Agricultura , Biomasa , Cadmio/metabolismo , Lactuca/metabolismo , Oryza/química , Contaminantes del Suelo/metabolismoRESUMEN
The potential of Acorus calamus to remove chlorpyrifos from water was assessed under laboratory conditions. Toxic effects of the insecticide in A. calamus were evaluated using pulse-amplitude modulated chlorophyll fluorescence techniques as well. At exposure concentrations above 8 mg L(-1), A. calamus showed obvious phytotoxic symptom with significant reduction in quantum efficiency of PSII (ΦPSII) and photochemical quenching coefficient (qP) in 20-day test; the inhibition of maximal quantum efficiency of PSII (Fv/Fm) was accompanied by a significant rise in initial chlorophyll fluorescence (Fo) within 15-day exposures. Fv/Fm and Fo recover to the normal level after 20-day exposure. The reduced removal rate to chlorpyrifos was observed with increase of initial chlorpyrifos concentrations. At application levels of 1, 2, and 4 mg L(-1), the disappearance rate of chlorpyrifos in the hydroponic system with plants was significantly greater than that without plants during the 20-day test periods. Chlorpyrifos was taken up from medium and transferred to above ground tissues by the plant and significant amounts of chlorpyrifos accumulated in plant tissues. The result indicated that A. calamus can promote the disappearance of chlorpyrifos from water and may be used for phytoremediation of water contaminated with a relatively low concentration of chlorpyrifos insecticide (<4 mg L(-1)).
Asunto(s)
Acorus/metabolismo , Cloropirifos/metabolismo , Insecticidas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Clorofila/metabolismo , Cloropirifos/análisis , Cloropirifos/toxicidad , Hidroponía , Insecticidas/análisis , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Ríos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
A field experiment was conducted to investigate the effect of bean stalk (BBC) and rice straw (RBC) biochars on the bioavailability of metal(loid)s in soil and their accumulation into rice plants. Phytoavailability of Cd was most dramatically influenced by biochars addition. Both biochars significantly decreased Cd concentrations in iron plaque (35-81 %), roots (30-75 %), shoots (43-79 %) and rice grain (26-71 %). Following biochars addition, Zinc concentrations in roots and shoots decreased by 25.0-44.1 and 19.9-44.2 %, respectively, although no significant decreases were observed in iron plaque and rice grain. Only RBC significantly reduced Pb concentrations in iron plaque (65.0 %) and roots (40.7 %). However, neither biochar significantly changed Pb concentrations in rice shoots and grain. Arsenic phytoavailability was not significantly altered by biochars addition. Calculation of hazard quotients (HQ) associated with rice consumption revealed RBC to represent a promising candidate to mitigate hazards associated with metal(loid) bioaccumulation. RBC reduced Cd HQ from a 5.5 to 1.6. A dynamic factor's way was also used to evaluate the changes in metal(loid) plant uptake process after the soil amendment with two types of biochar. In conclusion, these results highlight the potential for biochar to mitigate the phytoaccumulation of metal(loid)s and to thereby reduce metal(loid) exposure associated with rice consumption.
Asunto(s)
Carbón Orgánico/química , Metales Pesados/análisis , Oryza/química , Contaminantes del Suelo/análisis , Suelo/química , China , Oryza/crecimiento & desarrollo , Raíces de Plantas/química , Suelo/normasRESUMEN
The emergent plants Acorus calamus, Lythrum salicaria, and Scirpus tabernaemontani were exposed to atrazine for 15, 30, 45, and 60 days in a hydroponic system. Effects were evaluated investigating plant growth, chlorophyll (Chl) content, peroxidase (POD) activity, and malondialdehyde (MDA) content. Results showed that selected plants survived in culture solution with atrazine ≤8 mg L(-1), but relative growth rates decreased significantly in the first 15-day exposure. Chla content decreased, but MDA increased with increasing atrazine concentration. S. tabernaemontani was the most insensitive species, followed by A. calamus and L.salicaria. The growth indicators exhibited significant changes in the early stage of atrazine exposure; subsequently, the negative impacts weakened and disappeared. Plant growth may be more representative of emergent plant fitness than physiological endpoints in toxicity assessment of herbicides to emergent plants.
Asunto(s)
Atrazina/toxicidad , Herbicidas/toxicidad , Plantas/efectos de los fármacos , Acorus/crecimiento & desarrollo , Clorofila , Hidroponía , Lythrum , Desarrollo de la Planta , Contaminantes Químicos del Agua/toxicidadRESUMEN
A historically multi-metal contaminated soil was amended with biochars produced from different parts of rice plants (straw, husk and bran) to investigate how biochar can influence the mobility of Cd, Zn, Pb and As in rice seedlings (Oryza sativa L.). Rice shoot concentrations of Cd, Zn and Pb decreased by up to 98%, 83% and 72%, respectively, due to biochar amendment, though that of As increased by up to 327%. Biochar amendments significantly decreased pore water concentrations (C(pw)) of Cd and Zn and increased that of As. For Pb it depended on the amendment. Porewater pH, dissolved organic carbon, dissolved phosphorus, silicon in pore water and iron plaque formation on root surfaces all increased significantly after the amendments. The proportions of Cd and Pb in iron plaque increased by factors 1.8-5.7 and 1.4-2.8, respectively; no increase was observed for As and Zn. Straw-char application significantly and noticeably decreased the plant transfer coefficients of Cd and Pb. This study, the first to investigate changes in metal mobility and iron plaque formation in rice plants due to amending a historically contaminated soil with biochar, indicates that biochar has a potential to decrease Cd, Zn and Pb accumulations in rice shoot but increase that of As. The main cause is likely biochar decreasing the C(pw) of Cd and Zn, increasing the C(pw) of As, and increasing the iron plaque blocking capacity for Cd and Pb.
Asunto(s)
Arsénico/química , Carbón Orgánico/química , Metales Pesados/química , Oryza/química , Contaminantes del Suelo/química , Cadmio/química , Concentración de Iones de Hidrógeno , Hierro/química , Plomo/química , Raíces de Plantas/química , Plantones/química , Zinc/químicaRESUMEN
The role of root hairs in Cd acquisition from soil was investigated in three pot experiments using a root hairless mutant (bald root barley, brb) and its wild-type (WT) cultivar of barley (Hordeum vulgare). brb had significantly lower concentrations and lower total amounts of Cd in shoots than WT. The Cd uptake efficiency based on total root length was 8-45% lower in brb than in WT. The difference between brb and WT increased with increasing extractable Cd in soil under the experimental conditions used. Additions of phosphate to soil decreased Cd extractability. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. These effects resulted in decreased Cd uptake with increasing P supply. Cd uptake in WT correlated significantly with root length, root hair length and density, and soil extractable Cd. Root hairs contribute significantly to Cd uptake by barley.
Asunto(s)
Cadmio/metabolismo , Hordeum/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Hordeum/genética , Hordeum/crecimiento & desarrollo , Fosfatos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrolloRESUMEN
A pot experiment was conducted using a soil contaminated with 2.12 mg x kg(-1) Cd to study the effect of the variety of the soil bulk density on the Zn/Cd uptake by the hyperaccumulator Thlaspi caerulescens and the removal of Cd and Zn from the soil. The contaminated soil received 0, 0.1%, 2% of soil conditioner and the plants were harvested after 100 days. The results showed that soil amendment with the soil conditioner (EB. a) significantly decreased the soil bulk density. Compared to the control, the bulk density value decreased from 1.27 g x cm(-3) to 1.09 g x cm(-3) at the level of 2% soil conditioner. The increased biomass of shoot and root was observed at the treatment of EB. a amendment. The total root length, root hair length and root/shoot ratio were all significantly enhanced (p < 0.05) by the addition of EB. a. The significant positive relationships between the total root length and the removed Cd/Zn from soil were determined (p < 0.05). Compared with the control,the total root length was increased by 2.6 folds at the addition of 2% soil conditioner; the Cd concentration and removal of Cd from soil were significantly elevated by 20% and 30% respectively. The phytoextraction efficiency of Cd was improved from 15% to 19%. However, the Zn concentration and removal of Zn were not significantly elevated by the addition of soil conditioner. The present results demonstrate that the decreased soil bulk density may improve the root system of T. caerulescens and enhance the phytoextraction efficiency of Cd.
Asunto(s)
Cadmio/aislamiento & purificación , Raíces de Plantas/metabolismo , Contaminantes del Suelo/aislamiento & purificación , Suelo/análisis , Thlaspi/metabolismo , Absorción , Biodegradación Ambiental , Cadmio/metabolismo , Raíces de Plantas/anatomía & histología , Contaminantes del Suelo/metabolismo , Thlaspi/crecimiento & desarrollo , Zinc/aislamiento & purificación , Zinc/metabolismoRESUMEN
Cadmium accumulation among 12 cultivars of radish (Raphanus sativus) and 10 cultivars of carrot (Daucus carota var. sativa) was studied in a Cd-contaminated soil. The Cd concentration in the edible parts of radish and carrot ranged from 0.04 to 0.14 and 0.14 to 0.19 mg kg(-1) fresh weight, respectively. All the tested carrot cultivars and 33% of the tested radish cultivars exceeded the Chinese allowable limit for Cd. The study showed a greater scope for selecting radish cultivars than for carrot to avoid the excess of the Cd limit when grown on lightly contaminated soils.
Asunto(s)
Cadmio/metabolismo , Daucus carota/metabolismo , Raphanus/metabolismo , Contaminantes del Suelo/metabolismo , Cadmio/análisis , China , Raíces de Plantas/química , Contaminantes del Suelo/análisisRESUMEN
In a water culture experiment with rice and rape, different concentrations of chloride or EDTA were added to study the effects of chlorine ion and EDTA complexation on the uptake of cadmium by the plants. The results showed that the cadmium concentration in the shoots and roots of test plants decreased with increasing concentration of chloride or EDTA. With the increase of Cl- concentration, the cadmium content in rice shoot and root decreased from 212.2 mg x kg (-1) and 345. 1 mg x kg - to 34.1 mg x kg(-1) and 209.1 mg x kg(-1) , respectively. EDTA addition decreased the cadmium content in rice shoot and root from 212.2 mg x kg (-1) and 345.2 mg x kg(-1) to 50.0 mg x kg(-1) and 4.2 mg x kg(-1) , and that in rape shoot and root from 86.7 mg x kg(-1) and 149. 2 mg x kg(-1) to 22.2 mg x kg (-1) and 12. 3 mg x kg(-1 ), respectively. EDTA also affected the cadmium translocation from root to shoot. The complexation of Cl- or EDTA with cadmium reduced the uptake of Cd by plants, and the effect of EDTA was more obvious than that of Cl -.