Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.282
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(13): e23791, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963340

RESUMEN

Inflammatory bowel disease (IBD) is a kind of recurrent inflammatory disorder of the intestinal tract. The purpose of this study was to investigate the effects of Weissella paramesenteroides NRIC1542 on colitis in mice. A colitis model was induced by adding 1.5% DSS to sterile distilled water for seven consecutive days. During this process, mice were administered different concentrations of W. paramesenteroides NRIC1542. Colitis was assessed by DAI, colon length and hematoxylin-eosin staining of colon sections. The expressions of NF-κB signaling proteins and the tight junction proteins ZO-1 and occludin were detected by western blotting, and the gut microbiota was analyzed by 16S rDNA. The results showed that W. paramesenteroides NRIC1542 significantly reduced the degree of pathological tissue damage and the levels of TNF-α and IL-1ß in colonic tissue, inhibiting the NF-κB signaling pathway and increasing the expression of SIRT1, ZO-1 and occludin. In addition, W. paramesenteroides NRIC1542 can modulate the structure of the gut microbiota, characterized by increased relative abundance of Muribaculaceae_unclassified, Paraprevotella, Prevotellaceae_UCG_001 and Roseburia, and decrease the relative abundance of Akkermansia and Alloprevotella induced by DSS. The above results suggested that W. paramesenteroides NRIC1542 can protect against DSS-induced colitis in mice through anti-inflammatory, intestinal barrier maintenance and flora modulation.


Asunto(s)
Colitis , Sulfato de Dextran , Microbioma Gastrointestinal , FN-kappa B , Transducción de Señal , Sirtuina 1 , Weissella , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Sirtuina 1/metabolismo , Ratones , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Sulfato de Dextran/toxicidad , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Weissella/metabolismo , Masculino , Probióticos/farmacología
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 377-383, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38953261

RESUMEN

Objective To analyze the research progress and hot topics in hypertrophic cardiomyopathy from 2018 to 2022.Methods The publications in the field of hypertrophic cardiomyopathy from January 1,2018 to December 31,2022 were retrieved from Web of Science core collection database and included for a bibliometric analysis.Results A total of 6355 publications were included,with an average citation frequency of 7 times.The year 2021 witnessed the most publications (1406).The analysis with VOSviewer showed that the research on sudden death related to hypertrophic cardiomyopathy,especially the predictive value of late gadolinium-enhanced cardiac MRI in sudden death,was a hot topic.In addition,gene detection and the new drug mavacamten became hot research topics.The United States was the country with the largest number of publications and the highest citation frequency in this field.Chinese scholars produced the second largest number of publications,which,however,included few high-quality research results.Conclusions Risk stratification and prevention of sudden death is still an important and hot research content in the field of hypertrophic cardiomyopathy.Chinese scholars should carry out multi-center cooperation in the future to improve the research results.


Asunto(s)
Bibliometría , Cardiomiopatía Hipertrófica , Cardiomiopatía Hipertrófica/epidemiología , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/diagnóstico , Humanos , Muerte Súbita Cardíaca/epidemiología , Publicaciones/estadística & datos numéricos , China/epidemiología
3.
J Gene Med ; 26(7): e3715, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962887

RESUMEN

BACKGROUND: The present study aimed to dissect the cellular complexity of Crohn's disease (CD) using single-cell RNA sequencing, focusing on identifying key cell populations and their transcriptional profiles in inflamed tissue. METHODS: We applied scRNA-sequencing to compare the cellular composition of CD patients with healthy controls, utilizing Seurat for clustering and annotation. Differential gene expression analysis and protein-protein interaction networks were constructed to identify crucial genes and pathways. RESULTS: Our study identified eight distinct cell types in CD, highlighting crucial fibroblast and T cell interactions. The analysis revealed key cellular communications and identified significant genes and pathways involved in the disease's pathology. The role of fibroblasts was underscored by elevated expression in diseased samples, offering insights into disease mechanisms and potential therapeutic targets, including responses to ustekinumab treatment, thus enriching our understanding of CD at a molecular level. CONCLUSIONS: Our findings highlight the complex cellular and molecular interplay in CD, suggesting new biomarkers and therapeutic targets, offering insights into disease mechanisms and treatment implications.


Asunto(s)
Enfermedad de Crohn , Análisis de la Célula Individual , Ustekinumab , Enfermedad de Crohn/genética , Enfermedad de Crohn/tratamiento farmacológico , Humanos , Ustekinumab/uso terapéutico , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Mapas de Interacción de Proteínas , Fibroblastos/metabolismo , Biomarcadores , Femenino , Transcriptoma , Adulto , Masculino , Linfocitos T/metabolismo , Linfocitos T/inmunología , Resultado del Tratamiento , Análisis de Secuencia de ARN/métodos , Redes Reguladoras de Genes
4.
Sci Total Environ ; 946: 174448, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969120

RESUMEN

Afforestation is a crucial pathway for ecological restoration and has the potential to modify soil microbial community, thereby impacting the cycling and accumulation of carbon in soil across diverse patterns. However, the overall patterns of how afforestation impacts below-ground carbon cycling processes remain uncertain. In this comprehensive meta-analysis, we systematically evaluated 7045 observations from 210 studies worldwide to evaluate the influence of afforestation on microbial communities, enzyme activities, microbial functions, and associated physicochemical properties of soils. Afforestation increases microbial biomass, carbon and nitrogen hydrolase activities, and microbial respiration, but not carbon oxidase activity and nitrogen decomposition rate. Conversely, afforestation leads to a reduction in the metabolic quotient, with significant alteration of bacterial and fungal community structures and positive effects on the fungi: bacteria ratio rather than alpha and beta diversity metrics. We found a total 77 % increase in soil organic carbon (SOC) content after afforestation, which varied depending on initial SOC content before afforestation, afforestation stand age, and aridity index of afforestation sites. The modified SOC is associated with bacterial community composition along with intracellular metabolic quotient and extracellular carbon degrading enzyme activity playing a role. These findings provide insights into the pathways through which afforestation affects carbon cycling via microorganisms, thus improving our knowledge of soil carbon reservoir's responses to afforestation under global climate change.

5.
J Hazard Mater ; 476: 135100, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972200

RESUMEN

This research proposes a simple and novel strategy for the green detection of antibiotics along with the reduction of microplastic and humic acid (HA) hazards. The entire process is based on a single-step solvent-sieving method to separate HA into insoluble (IHA) and soluble (SHA) components, subsequently recombining and designing the application according to the original characteristics of selected fractions in accordance with the zero-waste principle. IHA was applied as a dispersive solid phase extraction (DSPE) sorbent without chemical modification for the enrichment of trace MACs in complex biological matrices. The recovery of MACs was 74.06-100.84 % in the range of 2.5-1000 µg∙kg-1. Furthermore, SHA could be combined with biodegradable polyvinyl alcohol (PVA) to prepare multifunctional composite films. SHA endows the PVA film with favorable mechanical properties, excellent UV shielding as well as oxidation resistance performance. Compared with pure PVA, the tensile strength, toughness, antioxidant and UV-protection properties were increased to 157.3 Mpa, 258.6 MJ·m-3, 78.6 % and 60 % respectively. This study achieved a green and economically valuable utilization of all components of waste HA, introduced a novel approach for monitoring and controlling harmful substances and reducing white pollution. This has significant implications for promoting sustainable development and recovering valuable resources.

6.
Int Heart J ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39010223

RESUMEN

Currently, providing patients, particularly those with acute myocardial infarction (AMI), with comprehensive cardiac rehabilitation (CR) has been challenging because of the inadequate availability of medical resources in developing countries. To ensure balance between disease instability and early rehabilitation, strategies for facilitating professional and comprehensive CR opportunities for patients with AMI must be explored.A prospective cohort study was carried out on 1,533 patients with AMI who were admitted to a tertiary hospital between July 2018 and October 2019. Following the principle of voluntarism, 286 patients with AMI participated in home-center-based CR (HCB group), whereas 1,247 patients received usual care (UC group). The primary endpoint of this study was the occurrence of cardiovascular events at 30 months after AMI. Moreover, the study analyzed factors that influence participation rate and effectiveness of the CR model.After analysis, a significant difference in the occurrence of cardiovascular endpoints between the HCB group and the UC group was observed (harzard ratio, 0.68 [95%CI, 0.51-0.91], P = 0.008), with participation in home-center-based CR being an independent influencing factor. Multivariate regression analysis revealed age, gender, smoking history, triglyceride levels, and ejection fraction as independent factors that influence participation rate. Female gender, peak oxygen uptake per kilogram body weight, and ventilation/carbon dioxide production slope were identified as factors that affect the effectiveness of the CR model.In the context of developing countries, this study demonstrates that the home-center-based CR model is efficient and analyzes factors that influence participation rate and effectiveness of the model. These findings provide practical insights for further development of CR programs.

7.
BMC Surg ; 24(1): 208, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39010005

RESUMEN

BACKGROUND: SII, PNI, SIRI, AAPR, and LIPI are prognostic scores based on inflammation, nutrition, and immunity. The purpose of this study was to examine the prognostic value of the SII, PNI, SIRI, AAPR, and LIPI in patients with UTUC who underwent radical nephroureterectomy with bladder cuff excision. MATERIALS AND METHODS: Data of UTUC patients in Sichuan Provincial People's Hospital from January 2017 to December 2021 were collected. The optimal critical values of SII, PNI, SIRI, and AAPR were determined by ROC curve, and LIPI was stratified according to the dNLR and LDH. The Kaplan-Meier method was used to draw the survival curve, and Cox proportional hazard model was used to analyze the factors affecting the prognosis of UTUC patients. RESULTS: A total of 81 patients with UTUC were included in this study. The optimal truncation value of PNI, SII, SIRI and AAPR were determined to be 48.15, 596.4, 1.45 and 0.50, respectively. Univariate Cox proportional hazard regression showed that low PNI, high SII, high SIRI, low AAPR and poor LIPI group were effective predictors of postoperative prognosis of UTUC patients. Multivariate Cox proportional hazard regression showed that high SII was an independent risk factor for postoperative prognosis of UTUC patients. According to ROC curve, the prediction efficiency of fitting indexes of PNI, SII, SIRI, AAPR and LIPI is better than that of using them alone. CONCLUSIONS: The SII, PNI, SIRI, AAPR, and LIPI was a potential prognostic predictor in UTUC patients who underwent radical nephroureterectomy with bladder cuff excision.


Asunto(s)
Inflamación , Nefroureterectomía , Humanos , Estudios Retrospectivos , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Inflamación/inmunología , Anciano , Carcinoma de Células Transicionales/cirugía , Carcinoma de Células Transicionales/mortalidad , Estado Nutricional , Evaluación Nutricional , Periodo Preoperatorio , Inmunidad , Neoplasias Renales/cirugía , Neoplasias Renales/inmunología , Neoplasias Renales/mortalidad
8.
Front Pharmacol ; 15: 1409022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989147

RESUMEN

Introduction: To clarify the prevalence of adverse renal outcomes following targeted therapies in renal cell carcinoma (RCC). Methods: A systematic search was performed in MEDLINE, EMBASE, and Cochrane Central Library. Studies that had reported adverse renal outcomes following targeted therapies in RCC were eligible. Outcomes included adverse renal outcomes defined as either renal dysfunction as evidenced by elevated serum creatinine levels or the diagnosis of acute kidney injury, or proteinuria as indicated by abnormal urine findings. The risk of bias was assessed according to Cochrane handbook guidelines. Publication bias was assessed using Funnel plot analysis and Egger Test. Results: The occurrences of the examined outcomes, along with their corresponding 95% confidence intervals (CIs), were combined using a random-effects model. In all, 23 studies including 10 RCTs and 13 observational cohort studies were included. The pooled incidence of renal dysfunction and proteinuria following targeted therapies in RCC were 17% (95% CI: 12%-22%; I2 = 88.5%, p < 0.01) and 29% (95% CI: 21%-38%; I2 = 93.2%, p < 0.01), respectively. The pooled incidence of both types of adverse events varied substantially across different regimens. Occurrence is more often in polytherapy compared to monotherapy. The majority of adverse events were rated as CTCAE grades 1 or 2 events. Four studies were assessed as having low risk of bias. Conclusion: Adverse renal outcomes reflected by renal dysfunction and proteinuria following targeted therapies in RCC are not uncommon and are more often observed in polytherapy compared to monotherapy. The majority of the adverse events were of mild severity. Systematic Review Registration: Identifier CRD42023441979.

9.
Acta Biomater ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025394

RESUMEN

Mg-Ga alloys are considered highly potential biodegradable materials, owing to its good mechanical properties and appropriate corrosion resistance. However, it is still far from application due to the lack of biological evaluation. In the present study, biocompatibility, osteogenesis and antibacterial activity of extruded Mg-xGa (x=1 and 5 wt.%) alloys were investigated by in vitro cell culture experiments and in vivo implantation. The cell adhesion and proliferation of osteoblast precursor cells (MC3T3-E1) showed the excellent cytocompatibility of Mg-1Ga and poor cytocompatibility of Mg-5Ga. The osteogenic activity was evaluated and revealed that Ga3+ in the Mg-1Ga extract had the ability to enhance osteogenic differentiation through the facilitation of its early stages. In vivo studies in a rat femoral condyle model revealed that both Mg-1Ga and Mg-5Ga significantly promoted new bone formation without causing any adverse effects. Mg-5Ga exhibited a much higher corrosion rate in vivo than Mg-1Ga. Its osteogenic activity was better due to the rapid release of Mg2+ and Ga3+, but this caused premature structural integrity loss. Mg-1Ga and Mg-5Ga released Ga3+ to inhibit E. coli and S. aureus, with antibacterial rate increasing with Ga content. Our studies demonstrate that Mg-Ga alloys have the potential to be used as osteogenic and antibacterial implant materials. STATEMENT OF SIGNIFICANCE: This study evaluates the biocompatibility, osteogenesis, and antibacterial activity of Mg-Ga alloys, which are promising biodegradable materials for medical applications. The study finds that Mg-1Ga exhibits excellent cytocompatibility and promotes osteogenic differentiation, facilitating the early stages of osteoblast precursor cell development. In vivo studies in a rat femoral condyle model reveal that Mg-1Ga and Mg-5Ga significantly promote new bone formation without causing any adverse effects. The antibacterial activity of both alloys is evaluated against E. coli and S. aureus, with the inhibition rate increasing with Ga content. These findings suggest that Mg-Ga alloys have the potential to serve as osteogenic and antibacterial implant materials, providing significant insights into the development of novel biomedical implants.

10.
Life Sci ; 352: 122868, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936604

RESUMEN

Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.

11.
ACS Nano ; 18(26): 16684-16691, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38885639

RESUMEN

Recently, there has been significant interest in topological nodal-line semimetals due to their linear energy dispersion with one-dimensional nodal lines or loops. These materials exhibit fascinating physical properties, such as drumhead surface states and 3D anisotropic nodal-line structures. Similar to Weyl semimetals, type-II nodal-line semimetals have two crossing bands that are both electron-like or hole-like along a certain direction. However, the direct observation of type-II nodal-line Fermions has been challenging due to the lack of suitable material platforms and the low density of states. Here we present experimental evidence for the coexistence of both type-I and type-II nodal-line Fermions in ZrSiSe, which was obtained through magneto-optical and angle-resolved photoemission spectroscopy (ARPES) measurements. Our density functional theory calculations predict that the type-II nodal-line structure can be developed in the Z-R line of the first Brillouin zone based on the lattice constants of the grown single crystal. Indeed, ARPES measurements reveal the type-II nodal-line band structure. The extracted type-II Landau level transitions from magneto-optical measurements exhibit good agreement with the calculated type-II energy dispersion model based on the band structure. Our experimental results demonstrate that ZrSiSe possesses two types of nodal-line Fermions, distinguishing it from other ZrSiX (X = S, Te) materials and positioning it as an ideal platform for investigating type-II nodal-line semimetals.

12.
Biochem Pharmacol ; 226: 116396, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942089

RESUMEN

This study introduces (S)-Opto-prop-2, a second-generation photoswitchable ligand designed for precise modulation of ß2-adrenoceptor (ß2AR). Synthesised by incorporating an azobenzene moiety with propranolol, (S)-Opto-prop-2 exhibited a high PSScis (photostationary state for cis isomer) percentage (∼90 %) and a favourable half-life (>10 days), facilitating diverse bioassay measurements. In vitro, the cis-isomer displayed substantially higher ß2AR binding affinity than the trans-isomer (1000-fold), making (S)-Opto-prop-2 one of the best photoswitchable GPCR (G protein-coupled receptor) ligands reported so far. Molecular docking of (S)-Opto-prop-2 in the X-ray structure of propranolol-bound ß2AR followed by site-directed mutagenesis studies, identified D1133.32, N3127.39 and F2896.51 as crucial residues that contribute to ligand-receptor interactions at the molecular level. In vivo efficacy was assessed using a rabbit ocular hypertension model, revealing that the cis isomer mimicked propranolol's effects in reducing intraocular pressure, while the trans isomer was inactive. Dynamic optical modulation of ß2AR by (S)-Opto-prop-2 was demonstrated in two different cAMP bioassays and using live-cell confocal imaging, indicating reversible and dynamic control of ß2AR activity using the new photopharmacology tool. In conclusion, (S)-Opto-prop-2 emerges as a promising photoswitchable ligand for precise and reversible ß2AR modulation with light. The new tool shows superior cis-on binding affinity, one of the largest reported differences in affinity (1000-fold) between its two configurations, in vivo efficacy, and dynamic modulation. This study contributes valuable insights into the evolving field of photopharmacology, offering a potential avenue for targeted therapy in ß2AR-associated pathologies.

13.
Cancer Invest ; 42(6): 491-499, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38905519

RESUMEN

OBJECTIVE: The composition of microbiota which correlates with infiltrating immune cells and clinical signatures is not clarified in CRC. METHODS: We applied 4 kinds of bioinformatic tools GSVA (version: 1.42.0), ESTIMATE (version: 1.0.13), CIBERSORT (version: 2.0), and immune-related genes. RESULTS: We found that a total of 8 types of microbiotas appeared in the three immune correlation analyses. Among these microbiotas, significant enrichments in relative abundances associated with immune cell infiltration can be found for the dominant phyla Proteobacteria, Firmicutes, and Actinobacteria. Moreover, there existed correlations between some of the 8 microbiotas and clinical-related indicators. CONCLUSION: We identified some novel microbiotas involved in immune regulation in CRC.


Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Microbioma Gastrointestinal , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Biología Computacional/métodos , Microbioma Gastrointestinal/inmunología , Linfocitos Infiltrantes de Tumor/inmunología
14.
Heliyon ; 10(11): e31959, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868072

RESUMEN

Objective: To detect levofloxacin (LFX) and moxifloxacin (MFX) resistance among rifampicin-resistant tuberculosis (RR-TB) isolates, and predict the resistance level based on specific mutations in gyrA and gyrB genes. Methods: A total of 686 RR-TB isolates were collected from Chinese Drug Resistance Surveillance Program from 2013 to 2020. The minimum inhibitory concentrations (MICs) of 12 anti-TB drugs were acquired using the broth microdilution method, followed by whole genome sequencing (WGS) analysis. Results: Among the 686 RR isolates, the most prevalent resistance was to isoniazid (80.5 %) and ethambutol (28.4 %), followed by LFX (26.1 %) and MFX (21.9 %). The resistance rate of LFX (26.1%-99.4 %) was higher than that of MFX (21.9%-83.3 %) across various drug resistance patterns. Of the 180 fluoroquinolones (FQs) resistant isolates, 168 (93.3 %) had mutations in quinolone-resistant determining regions (QRDRs) with 21 mutation types, and Asp94Gly (32.7 %, 55/168) was the predominant mutation. Isolates with mutations in Asp94Asn and Asp94Gly were associated with high levels of resistance to LFX and MFX. Using broth microdilution method as gold standard, the sensitivities of WGS for LFX and MFX were 93.3 % and 98.0 %, and the specificities were 98.6 % and 95.0 %, respectively. Conclusion: The resistance rate of LFX was higher than that of MFX among various drug resistance patterns in RR-TB isolates. The gyrA Asp94Gly was the predominant mutation type underlying FQs resistance. However, no significant difference was observed between mutation patterns in gyrA gene and resistance level of FQs.

15.
J Hazard Mater ; 475: 134834, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889460

RESUMEN

Organophosphate esters (OPEs) are widely used commercial additives, but their environmental persistence and toxicity raise serious concerns necessitating associated remediation strategies. Although there are various existing technologies for OPE removal, comprehensive screening for them is urgently needed to guide further research. This review provides a comprehensive overview of the techniques used to remove OPEs from soil and water, including their related influencing factors, removal mechanisms/degradation pathways, and practical applications. Based on an analysis of the latest literature, we concluded that (1) methods used to decontaminate OPEs include adsorption, hydrolysis, photolysis, advanced oxidation processes (AOPs), activated sludge processes, and microbial degradation; (2) factors such as the quantity/characteristics of the catalysts/additives, pH value, inorganic ion concentration, and natural organic matter (NOM) affect OPE removal; (3) primary degradation mechanisms involve oxidation induced by reactive oxygen species (ROS) (including •OH and SO4•-) and degradation pathways include hydrolysis, hydroxylation, oxidation, dechlorination, and dealkylation; (5) interference from the pH value, inorganic ion and the presence of NOM may limit complete mineralization during the treatment, impacting practical application of OPE removal techniques. This review provides guidance on existing and potential OPE removal methods, providing a theoretical basis and innovative ideas for developing more efficient and environmentally friendly techniques to treat OPEs in soil and water.


Asunto(s)
Restauración y Remediación Ambiental , Ésteres , Organofosfatos , Contaminantes del Suelo , Contaminantes Químicos del Agua , Ésteres/química , Contaminantes del Suelo/química , Contaminantes Químicos del Agua/química , Restauración y Remediación Ambiental/métodos , Organofosfatos/química , Organofosfatos/toxicidad , Purificación del Agua/métodos
16.
Front Genet ; 15: 1296533, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919951

RESUMEN

Small RNAs (sRNAs) are important non-coding RNA regulators that play key roles in the development and pathogenesis of plant pathogens, as well as in other biological processes. However, whether these abundant and varying sRNAs are involved in Phytophthora development or infection remains enigmatic. In this study, sRNA sequencing of 4 asexual stages of Phytophthora capsici (P. capsici), namely, as mycelia (HY), sporangia (SP), zoospores (ZO), cysts (CY), and pepper infected with P. capsici (IN), were performed, followed by sRNA analysis, microRNA (miRNA) identification, and miRNA target prediction. sRNAs were mainly distributed at 25-26 nt in HY, SP, and ZO but distributed at 18-34 nt in CY and IN. 92, 42, 176, 39, and 148 known miRNAs and 15, 19, 54, 13, and 1 novel miRNA were identified in HY, SP, ZO, CY, and IN, respectively. It was found that the expression profiles of known miRNAs vary greatly at different stages and could be divided into 4 categories. Novel miRNAs mostly belong to part I. Gene ontology (GO) analysis of known miRNA-targeting genes showed that they are involved in the catalytic activity pathway, binding function, and other biological processes. Kyoto Encyclopedia of Gene and Genome (KEGG) analysis of novel miRNA-targeting genes showed that they are involved in the lysine degradation pathway. The expression of candidate miRNAs was validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and miRNAs were downregulated in PcDCL1 or PcAGO1 mutants. To further explore the function of the detected miRNAs, the precursor of a novel miRNA, miR91, was knockout by CRISPR-Cas9, the mutants displayed decreased mycelial growth, sporangia production, and zoospore production. It was found that 503142 (Inositol polyphosphate 5-phosphatase and related proteins) can be predicted as a target of miR91, and the interaction between miR91 and 503142 was verified using the tobacco transient expression system. Overall, our results indicate that the diverse and differentially expressed sRNAs are involved in the development and pathogenesis of P. capsici.

17.
Huan Jing Ke Xue ; 45(6): 3649-3660, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897784

RESUMEN

This research aimed to clarify the effects of exogenously applied chitosan on the physiological characteristics, antioxidant activities, and Cd accumulation of wheat (Triticum aestivum L.) seedlings under cadmium (Cd) stress and to identify the key indicators based on the partial least squares model. The wheat variety studied was Bainong207 (BN207), and Cd-stress was achieved by growing seedlings in a hydroponic culture experiment with 10 and 25 µmol·L-1 Cd2+ added to the culture solution. It was found that both Cd-stress at 10 and 25 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Cd-stress. The Cd-stress also increased H2O2 and MDA accumulation and the degree of cell membrane lipid peroxidation and affected the activities of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD). Under Cd stress, exogenous chitosan decreased the Cd content in the aboveground and underground parts of wheat by 13.22 %-21.63 % and 7.92 %-28.32 % and reduced Cd accumulation in the aboveground and underground parts by 5.37 %-6.71 % and 1.91 %-4.09 %, respectively. Whereas exogenous chitosan application significantly reduced the content of H2O2 in roots and aboveground parts of wheat by 38.21 %-47.46 % and 45.81 %-55.73 % and MDA content by 37.65 %-48.12 % and 29.87 %-32.51 %, it increased the activities of SOD and POD in roots by 2.78 %-5.61 % and 13.81 %-18.33 %, respectively. In summary, exogenous chitosan can improve the photosynthetic characteristics and antioxidant enzyme activities of wheat seedlings under Cd stress, reduce the content and accumulation of Cd in the root and aboveground parts of wheat, and alleviate the damage of lipid peroxidation to the cell membrane. All of these results provide the basal data for the application of exogenous chitosan to alleviate Cd toxicity to wheat seedlings.


Asunto(s)
Antioxidantes , Cadmio , Quitosano , Plantones , Triticum , Triticum/metabolismo , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Cadmio/toxicidad , Cadmio/metabolismo , Quitosano/metabolismo , Quitosano/farmacología , Plantones/efectos de los fármacos , Plantones/metabolismo , Antioxidantes/metabolismo , Estrés Fisiológico/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-38833406

RESUMEN

Proper monitoring of anesthesia stages can guarantee the safe performance of clinical surgeries. In this study, different anesthesia stages were classified using near-infrared spectroscopy (NIRS) signals with machine learning. The cerebral hemodynamic variables of right proximal oxyhemoglobin (HbO2) in maintenance (MNT), emergence (EM) and the consciousness (CON) stage were collected and then the differences between the three stages were compared by phase-amplitude coupling (PAC). Then combined with time-domain including linear (mean, standard deviation, max, min and range), nonlinear (sample entropy) and power in frequency-domain signal features, feature selection was performed and finally classification was performed by support vector machine (SVM) classifier. The results show that the PAC of the NIRS signal was gradually enhanced with the deepening of anesthesia level. A good three-classification accuracy of 69.27% was obtained, which exceeded the result of classification of any single category feature. These results indicate the fesibility of NIRS signals in performing three or even more anesthesia stage classifications, providing insight into the development of new anesthesia monitoring modalities.

19.
Front Chem ; 12: 1416059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828017

RESUMEN

The cathode in lithium-selenium (Li-Se) batteries has garnered extensive attention owing to its superior specific capacity and enhanced conductivity compared to sulfur. Nonetheless, the adoption and advancement of Li-Se batteries face significant challenges due to selenium's low reactivity, substantial volume fluctuations, and the shuttle effect associated with polyselenides. Single-atom catalysts (SACs) are under the spotlight for their outstanding catalytic efficiency and optimal atomic utilization. To address the challenges of selenium's low chemical activity and volume expansion in Li-Se batteries, through electrospun, we have developed a lotus root-inspired carbon nanofiber (CNF) material, featured internal multi-channels and anchored with molybdenum (Mo) single atoms (Mo@CNFs). Mo single atoms significantly enhance the conversion kinetics of selenium (Se), facilitating rapid formation of Li2Se. The internally structured multi-channel CNF serves as an effective host matrix for Se, mitigating its volume expansion during the electrochemical process. The resulting cathode, Se/Mo@CNF composite, exhibits a high discharge specific capacity, superior rate performance, and impressive cycle stability in Li-Se batteries. After 500 cycles at a current density of 1 C, it maintains a capacity retention rate of 82% and nearly 100% coulombic efficiency (CE). This research offers a new avenue for the application of single-atom materials in enhancing advanced Li-Se battery performance.

20.
Int J Psychophysiol ; 202: 112376, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844052

RESUMEN

Individuals with Internet gaming disorder (IGD) often exhibit an approach bias towards gaming cues compared to non-gaming cues. Although previous studies suggested a positive correlation between approach bias and the severity of game use, the neuropsychological mechanisms that underpin the automatic action tendencies remain largely unexplored. The present study measured event-related potentials (ERPs) in 22 IGD and 23 healthy control (HC) participants who met the inclusion criteria, both groups conducted the Stimulus-Response Compatibility task (SRC), with their ERPs recorded during the task. Results revealed that the IGD group showed a significantly larger approach bias towards gaming cues (avoidance versus approach reaction time) compared to the HC group. The amplitude of P300 significantly increased, whereas N100 significantly decreased for game-approach compared to game-avoid for IGD compared to HC participants. The findings suggested that the enhanced integrated motivational value under compatible conditions as well as increased stimulus-response conflicts under incompatible conditions may contribute to the approach bias in IGD individuals. Further investigation on the intervention is prompted through longitudinal studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA