Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Anesth ; 98: 111573, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094442

RESUMEN

STUDY OBJECTIVE: Hyperlipidemia and postoperative delirium (POD) significantly affect patients' quality of life; however, the question of whether hyperlipidemia constitutes a risk factor for POD remain unclear. This study aimed to investigate whether patients with hyperlipidemia face elevated risks of developing POD and to identify potential causes for this increased risk. DESIGN: A prospective cohort study. SETTING: Operating room. PATIENTS: Patients were adults scheduled for colorectal cancer surgery in 2023. EXPOSURES: The exposure factor was hyperlipidemia, and the patients were divided into hyperlipidemia group and non-hyperlipidemia group. MEASUREMENTS: POD occurrence within three days post-surgery was assessed using the 3-Minute Diagnostic Interview for Confusion Assessment Method. Over one year, these patients were monitored through telephone to evaluate their survival and cognitive function. Logistic regression analysis was performed to evaluate the risk factors for POD development in patients with hyperlipidemia and to construct a clinical prediction model. MAIN RESULTS: This study included 555 patients. POD incidence was 21.6% in the hyperlipidemia group and 12.7% in the non-hyperlipidemia group. One year following surgery, patients with hyperlipidemia and POD exhibited significantly higher rates of mortality and cognitive decline than did those without POD (p < 0.001). A multifactorial logistic clinical prediction model was constructed from seven independent risk factors for POD development in patients with hyperlipidemia, including education, preoperative total cholesterol (TC), preoperative triglyceride (TG), diet, history of hypertension, Sedation-Agitation Scale, and postoperative trimethylamine N-oxide expression level, and it had the highest predictive value for POD development in patients with hyperlipidemia. CONCLUSIONS: Compared with those without hyperlipidemia, patients with hyperlipidemia had higher POD incidence. Elevated serum TC and TG levels are independent risk factors for POD in patients with hyperlipidemia. The study's findings could help develop strategies for improving POD and hyperlipidemia treatment.

2.
Sci Rep ; 14(1): 18402, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117753

RESUMEN

Gaining a comprehensive understanding of the role played by the oral microbiome in moderate to severe plaque psoriasis and its potential implications for disease management and development holds significant importance. With the objective of exploring correlations between the oral microbiota and severe psoriasis, this study involved 72 severe psoriasis patients and 16 healthy individuals, whose clinical manifestations and living habits were carefully recorded. Cutting-edge techniques such as 16S rRNA gene sequencing and bioinformatics analysis were employed to compare the microbial flora, investigating dynamic changes among severe plaque psoriasis patients, psoriatic arthritis patients and healthy individuals. The findings revealed noteworthy patterns including increased levels of Aggregatibacter in the psoriatic arthritis group, accompanied by a decrease in the level of Prevotella. Moreover, the enrichment o Capnocytandophaga (P = 0.009), Campylobacter (P = 0.0022), and Acetobacter (P = 0.0292) was notably more substantial in the psoriasis group compared to the control group, whereas certain bacterial species such as Bacteroides (P = 0.0049), Muribaculaceae (P = 0.0048) demonstrated decreased enrichment. Additionally, the psoriatic arthritis group exhibited significantly higher levels of Ralstonia, Bifidobacterium and Micromonospora. Based on these findings, it can be inferred that individuals with lower levels of Prevotella and higher levels of Corynebacterium may be more susceptible to psoriasis exacerbation.


Asunto(s)
Artritis Psoriásica , Microbiota , Psoriasis , ARN Ribosómico 16S , Humanos , Artritis Psoriásica/microbiología , Femenino , Masculino , Psoriasis/microbiología , Microbiota/genética , Adulto , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Boca/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Enfermedades de la Uña/microbiología , Estudios de Casos y Controles
3.
J Colloid Interface Sci ; 677(Pt A): 577-586, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39111093

RESUMEN

The intriguing characteristics of two-dimensional (2D) heterostructures stem from their unique interfaces, which can improve ion storage capability and rate performance. However, there are still challenges in increasing the proportion of heterogeneous interfaces in materials and understanding the complex interaction mechanisms at these interfaces. Here, we have successfully synthesized confined CoSe2 within the interlayer space of Ti3C2Tx through a simple solvothermal method, resulting in the formation of a superlattice-like heterostructures of CoSe2@Ti3C2Tx. Both density functional theory (DFT) calculations and experimental results show that compared with CoSe2 and Ti3C2Tx, CoSe2@Ti3C2Tx can significantly improve adsorption of Na+ ions, while maintaining low volume expansion and high Na+ ions migration rate. The heterostructure formed by MXene and CoSe2 is a Schottky heterostructure, and its interfacial charge transfer induces a built-in electric field that promotes rapid ion transport. When CoSe2@Ti3C2Tx was used as an anode material, it exhibits a high specific capacity of up to 600.1 mAh/g and an excellent rate performance of 206.3 mAh/g at 20 A/g. By utilizing CoSe2@Ti3C2Tx as the anode and activated carbon (AC) as the cathode, the sodium-ion capacitor of CoSe2@Ti3C2Tx//AC exhibits excellent energy and power density (125.0 Wh kg-1 and 22.5 kW kg-1 at 300.0 W kg-1 and 37.5 Wh kg-1, respectively), as well as a long service life (86.3 % capacity retention over 15,300 cycles at 5 A/g), demonstrating its potential for practical applications.

4.
Adv Sci (Weinh) ; : e2404968, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033539

RESUMEN

The feasibility of aqueous zinc-ion batteries for large-scale energy storage is hindered by the inherent challenges of Zn anode. Drawing inspiration from cellular mechanisms governing metal ion and nutrient transport, erythritol is introduced, a zincophilic additive, into the ZnSO4 electrolyte. This innovation stabilizes the Zn anode via chelation interactions between polysaccharides and Zn2+. Experimental tests in conjunction with theoretical calculation results verified that the erythritol additive can simultaneously regulate the solvation structure of hydrated Zn2+ and reconstruct the hydrogen bond network within the solution environment. Additionally, erythritol molecules preferentially adsorb onto the Zn anode, forming a dynamic protective layer. These modifications significantly mitigate undesirable side reactions, thus enhancing the Zn2+ transport and deposition behavior. Consequently, there is a notable increase in cumulative capacity, reaching 6000 mA h cm⁻2 at a current density of 5 mA cm-2. Specifically, a high average coulombic efficiency of 99.72% and long cycling stability of >500 cycles are obtained at 2 mA cm-2 and 1 mA h cm-2. Furthermore, full batteries comprised of MnO2 cathode and Zn anode in an erythritol-containing electrolyte deliver superior capacity retention. This work provides a strategy to promote the performance of Zn anodes toward practical applications.

5.
J Dermatol ; 51(8): 1060-1067, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38895831

RESUMEN

Autologous cultured pure melanocyte transplantation (CMT) can be utilized to treat stable vitiligo cases, but clinical data are insufficient to improve its efficacy. To evaluate the influence of various factors on the therapeutic effect of CMT, this single-center retrospective study enrolled stable vitiligo patients who underwent CMT between 2009 and 2020. Univariate and multivariable analysis were used to determine the factors affecting the outcome of repigmentation. The study included 491 patients with long-term follow-up data (6-120 months). It was found that 69.7% of patients achieved an excellent re-color effect and 18.4% achieved a good re-color effect. There were statistically significant differences in pigmentation between patients with stable disease course, vitiligo type, and lesion site. Overall, a significant positive correlation between the target area treatment ratio of varied lesions and the percentage of repigmentation was found. CMT is effective and well tolerated in the treatment of stable vitiligo. Various factors, especially the target area treatment ratio of varied lesions, should be carefully assessed before using CMT. As the target area treatment ratio of varied lesions could further improve the post-operative repigmentation other than type of vitiligo. This clinic trial was approved by Hangzhou Third People's Hospital (number 2023KA015, national clinical record number MR-33-23-034502).


Asunto(s)
Melanocitos , Pigmentación de la Piel , Trasplante Autólogo , Vitíligo , Humanos , Vitíligo/terapia , Estudios Retrospectivos , Femenino , Masculino , Adulto , Melanocitos/trasplante , Adulto Joven , Adolescente , Persona de Mediana Edad , Resultado del Tratamiento , Niño , Estudios de Seguimiento , Células Cultivadas , Preescolar
6.
Front Neurol ; 15: 1401959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911586

RESUMEN

Background: Stroke, prevalent globally, particularly impacts low- and middle-income countries. Decreased lung function is one of the risk factors for stroke, and there is a lack of sufficient research on the association between the two, especially based on evidence from representative large samples. We aimed to explore the association between lung function and stroke incidence. Methods: We collected data from 13,371 participants from the 2007-2012 U.S. national cross-sectional study and 11,192 participants from the Chinese national cohort study during the 2011-2018 follow-up period. Multivariate logistic regression and Cox proportional hazards regression were used to assess cross-sectional and longitudinal associations of peak expiratory flow with stroke risks. Additionally, we used publicly available GWAS data from a European population to conduct Mendelian randomization analysis, further exploring the potential causal relationship. Results: The results of the cross-sectional study suggest that a decline in peak expiratory flow may be associated with an increased risk of stroke. The cohort study revealed that, compared to the first tertile group, the risk of stroke incidence in the second and third tertile groups of PEF decreased by 19% (hazard ratio (HR) = 0.810, 95%CI = 0.684-0.960) and 21.4% (HR = 0.786, 95%CI = 0.647-0.956), respectively. Mendelian randomization analysis clarified that higher PEF levels are significantly associated with a reduced risk of stroke (OR = 0.852, 95%CI = 0.727-0.997). Conclusion: Decreased lung function is a risk factor for stroke. As a simple and accurate indicator of lung function, PEF can be used to monitor lung function in community populations and patients for primary stroke prevention.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38839716

RESUMEN

When we search for something, we often rely on both what we see and what we remember. This process can be divided into three stages: selecting items, identifying those items, and comparing them with what we are trying to find in our memory. It has been suggested that we select items one by one, and we can identify several items at once. In the present study, we tested whether we need to finish comparing a selected item in the visual display with one or more target templates in memory before we can move on to the next selected item. In Experiment 1, observers looked for either one or two target types in a rapid serially presented stimuli stream. The time interval between the presentation onset of successive items in the stream was varied to get a threshold. For search for one target, the threshold was 89 ms. When look for either of two targets, it was 192 ms. This threshold difference offered a baseline. In Experiment 2, observers looked for one or two types of target in a search array. If they compared each identified item separately, we should expect a jump in the slope of the RT × Set Size function, on the order of the baseline obtained in Experiment 1. However, the slope difference was only 13 ms/item, suggesting that several identified items can be compared at once with target templates in memory. Experiment 3 showed that this slope difference was not just a memory-load cost.

8.
Small ; : e2401834, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623962

RESUMEN

Different facets in perovskite crystals exhibit distinct atomic arrangements, influencing their electronic, physical, and chemical properties. Perovskite films incorporating tin oxide (SnO2) as the electron transport layer face challenges in facet regulation. This study reveals that tea saponin (TS), a natural compound serves as a SnO2 modifier, facilitates optimal growth of perovskite crystals on the (111) facet. The modification promotes preferential crystal orientation through hydrogen bond and Lewis coordination. TS forms a chelate with SnO2, resulting in a smoother film and n-type doping, leading to improved carrier extraction and reduced defects. The TS-modified perovskite solar cells achieve a champion efficiency of 24.2%, leveraging from an obvious enhancement of open-circuit voltage (Voc) of 1.18 V and fill factor (FF) of 82.8%. The devices also demonstrate enhanced humidity tolerance and storage stability, ensuring improved stability without encapsulation.

9.
Inorg Chem ; 63(15): 6988-6997, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569109

RESUMEN

Rechargeable Zn-MnO2 batteries using mild water electrolytes have garnered significant interest owing to their impressive theoretical energy density and eco-friendly characteristics. However, MnO2 suffers from huge structural changes during the cycles, resulting in very poor stability at high charge-discharge depths. Briefly, the above problems are caused by slow kinetic processes and the dissolution of Mn atoms in the cycles. In this paper, a 2D homojunction electrode material (δ/ε-MnO2) based on δ-MnO2 and ε-MnO2 has been prepared by a two-step electrochemical deposition method. According to the DFT calculations, the charge transfer and bonding between interfaces result in the generation of electronic states near the Fermi surface, giving δ/ε-MnO2 a more continuous distribution of electron states and better conductivity, which is conducive to the rapid insertion/extraction of Zn2+ and H+. Moreover, the strongly coupled Mn-O-Mn interfacial bond can effectively impede dissolution of Mn atoms and thus maintain the structural integrity of δ/ε-MnO2 during the cycles. Accordingly, the δ/ε-MnO2 cathode exhibits high capacity (383 mAh g-1 at 0.1 A g-1), superior rate performance (150 mAh g-1 at 5 A g-1), and excellent cycling stability over 2000 cycles (91.3% at 3 A g-1). Profoundly, this unique homojunction provides a novel paradigm for reasonable selection of different components.

10.
Langmuir ; 40(13): 6601-6611, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38478901

RESUMEN

The natural world renders a large number of opportunities to design intriguing structures and fascinating functions for innovations of advanced surfaces and interfaces. Currently, bioinspired interfaces have attracted much attention in practical applications of renewable energy storage and conversion devices including rechargeable batteries, fuel cells, dye-sensitized solar cells, and supercapacitors. By mimicking miscellaneous natural creatures, many novel bioinspired interfaces with various components, structures, morphology, and configurations are exerted on the devices' electrodes, electrolytes, additives, separators, and catalyst matrixes, resorting to their wonderful mechanical, optical, electrical, physical, chemical, and electrochemical features compared with the corresponding traditional modes. In this Perspective, the principles of designing bioinspired interfaces are discussed with respect to biomimetic chemical components, physical morphologies, biochemical reactions, and macrobiomimetic assembly configurations. A brief summary, subsequently, is mainly focused on the recent progress on bioinspired interfaces applied in key materials for rechargeable batteries. Ultimately, a critical comment is projected on significant opportunities and challenges existing in the future development course of bioinspired interfaces. It is expected that this Perspective is able to provide a profound perception into some underlying artificial intelligent energy storage and conversion device design as a promising candidate to resolve the global energy crisis and environmental pollution.

11.
J Mater Chem B ; 12(9): 2373-2383, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38349037

RESUMEN

Smart lipids with fluorescence emission, thermal response, and polyethylene glycolation (PEGylation) functions can be highly valuable for formulation, image-traceable delivery, and targeted release of payloads. Herein, a series of jellyfish-shaped amphiphiles with a tetraphenylethene (TPE) core and four symmetrical amphiphilic side chains were conveniently synthesized and systematically investigated as smart lipids. Compared with regular amphiphilic TPE lipids and phospholipids, the unprecedented jellyfish-shaped molecular geometry was found to enable a series of valuable capabilities, including sensitive and responsive aggregation-induced emission of fluorescence (AIE FL) and real-time FL monitoring of drug uptake. Furthermore, the jellyfish-shaped geometry facilitated the concentration-dependent aggregation from unimolecular micelles at low concentrations to "side-by-side" spherical aggregates at high concentrations and a unique mode of AIE. In addition, the size and the arrangement of the amphiphilic side chains were found to dominate the aggregate stability, cell uptake, and thus the cytotoxicity of the amphiphiles. This study has unprecedentedly developed versatile smart TPE lipids with precise structures, and unique physicochemical and biological properties while the peculiar structure-property relationship may shed new light on the design and application of AIE fluorophores and functional lipids in biomedicine and materials science.


Asunto(s)
Colorantes Fluorescentes , Micelas , Fluorescencia , Membrana Celular , Colorantes Fluorescentes/química , Lípidos
12.
Small ; 20(6): e2305902, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37775329

RESUMEN

Rechargeable aqueous zinc-ion batteries are regarded as promising energy storage devices due to their attractive economic benefits and extraordinary electrochemical performance. However, the sluggish Zn2+ mass transfer behavior and water-induced parasitic reactions that occurred on the anode-electrode interface inevitably restrain their applications. Herein, inspired by the selective permeability and superior stability of plasma membrane, a thin UiO-66 metal-organic framework layer with smart aperture size is ex-situ decorated onto the Zn anode. Experimental characterizations in conjunction with theoretical calculations demonstrate that this bio-inspired layer promotes the de-solvation process of hydrated Zn2+ and reduces the effective contact between the anode and H2 O molecules, thereby boosting Zn2+ deposition kinetics and restraining interfacial parasitic reactions. Hence, the Zn||Zn cells could sustain a long lifespan of 1680 h and the Zn||Cu cells yielded a stable coulombic efficiency of over 99.3% throughout 600 cycles under the assistance of the bio-inspired layer. Moreover, pairing with δ-MnO2 cathode, the full cells also demonstrate prominent cycling stability and rate performance. From the bio-inspired design philosophy, this work provides a novel insight into the development of aqueous batteries.

13.
Gene ; 893: 147901, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37839765

RESUMEN

Hair follicles undergo a renewal cycle consisting of anagen, telogen and catagen stages. MicroRNA (miRNA) plays a crucial role in this process. Recent studies have shown that miR-199a-5p, which exhibits differential expression between anagen and telogen stages in the hair follicle cycle of cashmere goats, inhibits the proliferation of various cell types, including skin keratinocytes and vascular endothelial cells. Since the proliferation of dermal papilla cells (DPCs) is a key factor in the hair follicle cycle, we utilized DPCs to investigate the function and molecular mechanism of miR-199a-5p in cashmere goats. Our functional analysis revealed that miR-199a-5p significantly suppressed cell viability and proliferation of DPCs, as evidenced by MTT, EdU and RT-qPCR methods. Subsequently, we investigated the regulatory mechanism of miR-199a-5p. Through bioinformatics analysis, a potential correlation between lnc102173187 and miR-199a-5p was predicted. However, the dual luciferase reporter assay revealed no interaction between lnc102173187 and miR-199a-5p. Further investigation using dual-luciferase reporter assay, RT-qPCR, and western blot results confirmed that VEGFA was the target gene of miR-199a-5p from. The functional experiment demonstrated that VEGFA promoted the proliferation of DPCs, and antagonized the inhibitory effect of miR-199a-5p on DPCs proliferation. Taken together, this research revealed the role of miR-199a-5p and VEGFA on the proliferation of dermal papilla cells in cashmere goat, which would enrich the theoretical basis for hair follicle development, and could also serve as a marker cofactor to play an important reference and guidance role in the breeding, improvement and optimization of cashmere goat breeds.


Asunto(s)
Cabras , MicroARNs , Animales , Cabras/genética , Cabras/metabolismo , Células Endoteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Folículo Piloso/metabolismo , Proliferación Celular/genética , Luciferasas/metabolismo
14.
J Phys Chem Lett ; 14(41): 9150-9158, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37796231

RESUMEN

Aqueous zinc-ion batteries are considered promising energy storage devices due to their superior electrochemical performance. Nevertheless, the uncontrolled dendrites and parasitic side reactions adversely affect the stability and durability of the Zn anode. To cope with these issues, inspired by the chelation behavior between metal ions and amino acids in the biological system, glutamic acid and aspartic acid are selected as electrolyte additives to stabilize the Zn anode. Experimental characterizations in conjunction with theoretical calculation results indicate that these additives can simultaneously modify the solvation structure of hydrated Zn2+ and preferentially adsorb onto the Zn anode, thereby restricting the occurrence of interfacial side reactions and enhancing the performance of the Zn anode. Benefiting from these synergistic effects, the as-assembled Zn-based batteries containing additive electrolytes achieved admirable electrochemical performance. From the viewpoint of electrolyte regulation, this work provides a bright direction toward the development of aqueous batteries.

15.
J Phys Chem Lett ; 14(41): 9167-9175, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37797163

RESUMEN

Aqueous zinc ion batteries exhibit a promising application prospect for next-generation energy storage devices. However, the decomposition of active H2O molecules on the Zn anode induces drastic dendrite formation, thereby impairing the performance for entire devices. To solve this challenge, we introduce subnanocyclic molecules of 15-Crown-5 as an additive into ZnSO4 electrolyte to stabilize the Zn anode. Owing to the binding property of crown ethers with alkali metal ions and the size-fit rule, the 15-Crown-5 additives enable effective regulation of the solvation structure of hydrated Zn2+ and reduce the efficient contact between Zn anode and active H2O, which are validated by the experimental analysis and theoretical calculations. Under the assistance of the 15-Crown-5 additive, the as-assembled Zn-based batteries deliver superior performance compared with ZnSO4 and 18-Crown-6contaning ZnSO4 electrolytes. This work shows a bright direction toward progress in aqueous batteries.

16.
Small Methods ; 7(11): e2300848, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37681531

RESUMEN

Near-infrared (NIR) photothermal manipulation has emerged as a promising and noninvasive technology for neuroscience research and disease therapy for its deep tissue penetration. NIR stimulated techniques have been used to modulate neural activity. However, due to the lack of suitable in vivo control systems, most studies are limited to the cellular level. Here, a NIR photothermal technique is developed to modulate cellular excitability and animal behaviors in Caenorhabditis elegans in vivo via the thermosensitive transient receptor potential vanilloid 1 (TRPV1) channel with an FDA-approved photothermal agent indocyanine green (ICG). Upon NIR stimuli, exogenous expression of TRPV1 in AFD sensory neurons causes Ca2+ influx, leading to increased neural excitability and reversal behaviors, in the presence of ICG. The GABAergic D-class motor neurons can also be activated by NIR irradiation, resulting in slower thrashing behaviors. Moreover, the photothermal manipulation is successfully applied in different types of muscle cells (striated muscles and nonstriated muscles), enhancing muscular excitability, causing muscle contractions and behavior changes in vivo. Altogether, this study demonstrates a noninvasive method to precisely regulate the excitability of different types of cells and related behaviors in vivo by NIR photothermal manipulation, which may be applied in mammals and clinical therapy.


Asunto(s)
Antineoplásicos , Caenorhabditis elegans , Animales , Verde de Indocianina , Línea Celular Tumoral , Conducta Animal , Mamíferos
17.
Zhongguo Zhen Jiu ; 43(6): 691-6, 2023 Jun 12.
Artículo en Chino | MEDLINE | ID: mdl-37313564

RESUMEN

The scientific basis of acupuncture on mesenchymal stem cells (MSCs) for treating ischemic stroke (IS) is discussed. MSCs transplantation has great potential for the treatment of tissue damage caused by early stage inflammatory cascade reactions of IS, but its actual transformation is limited by various factors. How to improve the homing efficiency of MSCs is the primary issue to enhance its efficacy. As such, the possible mechanisms of acupuncture and MSCs transplantation in inhibiting inflammatory cascade reactions induced by IS are explored by reviewing literature, and a hypothesis that acupuncture could promote the secretion of stromal cell-derived factor-1α (SDF-1α) from ischemic foci to regulate SDF-1α/CXC chemokine receptor 4 (CXCR4) axis, thereby improving the homing efficiency of MSCs transplantation, exerting its neuroprotective function, and improving the bed transformation ability, is proposed.


Asunto(s)
Terapia por Acupuntura , Accidente Cerebrovascular Isquémico , Células Madre Mesenquimatosas , Humanos , Quimiocina CXCL12 , Inflamación
18.
Nanomicro Lett ; 15(1): 101, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052861

RESUMEN

Ionic thermoelectrics (i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However, as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here, we introduce an ion-electron thermoelectric synergistic (IETS) effect by utilizing an ion-electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min. Moreover, our i-TE exhibits a thermopower of 32.7 mV K-1 and an energy density of 553.9 J m-2, which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials.

19.
ACS Omega ; 8(8): 7684-7689, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36873021

RESUMEN

The one-pot nucleophilic ring-opening reaction of oligoethylene glycol macrocyclic sulfates provides an efficient strategy for the monofunctionalization of oligoethylene glycols without protecting or activating group manipulation. In this strategy, the hydrolysis process is generally promoted by sulfuric acid, which is hazardous, difficult to handle, environmentally unfriendly, and unfit for industrial operation. Here, we explored a convenient handling solid acid, Amberlyst-15, as a replacement for sulfuric acid to accomplish the hydrolysis of sulfate salt intermediates. With this method, 18 valuable oligoethylene glycol derivatives were prepared with high efficiency, and gram-scale applicability of this method has been successfully demonstrated to afford a clickable oligoethylene glycol derivative 1b and a valuable building block 1g for F-19 magnetic resonance imaging traceable biomaterial construction.

20.
Nat Commun ; 14(1): 917, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36801865

RESUMEN

The formation of polaron, i.e., the strong coupling process between the carrier and lattice, is considered to play a crucial role in benefiting the photoelectric performance of hybrid organic-inorganic halide perovskites. However, direct observation of the dynamical formation of polarons occurring at time scales within hundreds of femtoseconds remains a technical challenge. Here, by terahertz emission spectroscopy, we demonstrate the real-time observation of polaron formation process in FAPbI3 films. Two different polaron resonances interpreted with the anharmonic coupling emission model have been studied: P1 at ~1 THz relates to the inorganic sublattice vibration mode and the P2 at ~0.4 THz peak relates to the FA+ cation rotation mode. Moreover, P2 could be further strengthened than P1 by pumping the hot carriers to the higher sub-conduction band. Our observations could open a door for THz emission spectroscopy to be a powerful tool in studying polaron formation dynamics in perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA