Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 138: 62-73, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135425

RESUMEN

Organic nitrogen (ON) compounds play a significant role in the light absorption of brown carbon and the formation of organic aerosols, however, the mixing state, secondary formation processes, and influencing factors of ON compounds are still unclear. This paper reports on the mixing state of ON-containing particles based on measurements obtained using a high-performance single particle aerosol mass spectrometer in January 2020 in Guangzhou. The ON-containing particles accounted for 21% of the total detected single particles, and the particle count and number fraction of the ON-containing particles were two times higher at night than during the day. The prominent increase in the content of ON-containing particles with the enhancement of NOx mainly occurred at night, and accompanied by high relative humidity and nitrate, which were associated with heterogeneous reactions between organics and gaseous NOx and/or NO3 radical. The synchronous decreases in ON-containing particles and the mass absorption coefficient of water-soluble extracts at 365 nm in the afternoon may be associated with photo-bleaching of the ON species in the particles. In addition, the positive matrix factorization analysis found five factors dominated the formation processes of ON particles, and the nitrate factor (33%) mainly contributed to the production of ON particles at night. The results of this study provide unique insights into the mixing states and secondary formation processes of the ON-containing particles.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Nitratos/análisis , Monitoreo del Ambiente , China , Compuestos Orgánicos/análisis , Aerosoles/análisis
2.
Insect Sci ; 30(6): 1607-1621, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36915030

RESUMEN

Methyl-CpG (mCpG) binding domain (MBD) proteins especially bind with methylated DNA, and are involved in many important biological processes; however, the binding mechanism between insect MBD2/3 and mCpG remains unclear. In this study, we identified 2 isoforms of the MBD2/3 gene in Bombyx mori, MBD2/3-S and MBD2/3-L. Binding analysis of MBD2/3-L, MBD2/3-S, and 7 mutant MBD2/3-L proteins deficient in ß1-ß6 or α1 in the MBD showed that ß2-ß3-turns in the ß-sheet of the MBD are necessary for the formation of the MBD2/3-mCpG complex; furthermore, other secondary structures, namely, ß4-ß6 and an α-helix, play a role in stabilizing the ß-sheet structure to ensure that the MBD is able to bind mCpG. In addition, sequence alignment and binding analyses of different insect MBD2/3s indicated that insect MBD2/3s have an intact and conserved MBD that binds to the mCpG of target genes. Furthermore, MBD2/3 RNA interference results showed that MBD2/3-L plays a role in regulating B. mori embryonic development, similar to that of DNA methylation; however, MBD2/3-S without ß4-ß6 and α-helix does not alter embryonic development. These results suggest that MBD2/3-L recognizes and binds to mCpG through the intact ß-sheet structure in its MBD, thus ensuring silkworm embryonic development.


Asunto(s)
Bombyx , Proteínas de Unión al ADN , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Bombyx/genética , Bombyx/metabolismo , Islas de CpG , Conformación Proteica en Lámina beta , Metilación de ADN , Genómica
3.
Insect Sci ; 30(4): 1063-1080, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36419227

RESUMEN

DNA methylation and transcription factors play roles in gene expression and animal development. In insects, DNA methylation modifies gene bodies, but how DNA methylation and transcription factors regulate gene expression is unclear. In this study, we investigated the mechanism that regulates the expression of Bombyx mori Zinc finger protein 615 (ZnF 615), which is a downstream gene of DNA methyltransferase 1 (Dnmt1), and its effects on the regulation of embryonic development. By progressively truncating the ZnF 615 promoter, it was found that the -223 and -190 nt region, which contains homeobox (Hox) protein cis-regulatory elements (CREs), had the greatest impact on the transcription of ZnF 615. RNA interference (RNAi)-mediated knockdown and overexpression of Hox family genes showed that Hox A1-like can enhance the messenger RNA level of ZnF 615. Further studies showed that Hox A1-like regulates ZnF 615 expression by directly binding to the -223 and -190 nt region of its promoter. Simultaneous RNAi-mediated knockdown or overexpression of Hox A1-like and Dnmt1 significantly inhibited or enhanced the regulatory effect of either gene alone on ZnF 615 expression, suggesting that both DNA methylation of gene bodies and binding of transcription factors to promoters are essential for gene expression. RNAi-mediated knockdown of Hox A1-like and Dnmt1 showed that the embryonic development was retarded and the hatching rate was decreased. Taken together, these data suggest that Hox A1-like and DNA methylation enhance the expression of ZnF 615, thereby affecting the development of B. mori embryos.


Asunto(s)
Bombyx , Animales , Metilación de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética , Desarrollo Embrionario/genética , Expresión Génica , Dedos de Zinc , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
4.
Sci Total Environ ; 846: 157440, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868389

RESUMEN

The formation processes of particulate amines are closely related to their emission sources and secondary reactions, which can be revealed through the investigation of their real-time mixing states in individual particles. The mixing states of methylamine (MA)-, trimethylamine (TMA)-, and diethylamine (DEA)-containing particles were studied using a high-performance single particle aerosol mass spectrometer (HP-SPAMS) in Guangzhou, China, in January 2020. The sharp increase in TMA particles was found to be closely associated with the increase in the ambient relative humidity (RH), while the MA- and DEA-containing particles were not similarly influenced by the changes in the RH. The prominent enrichment of secondary oxygenated organics in DEA particles during the daytime was consistent with the active period of photochemistry, implying that the sharp decrease in DEA particles in the afternoon was likely due to photo-oxidation of the DEA. The number fraction (Nf) of DEA particles, the Nf of the nitrate in the DEA particles, and the abundance of nitrate increased as the NOx content all increased during the nighttime, suggesting that the formation of DEA·HNO3 salt was the dominant pathway of particulate DEA production. These results are consistent with our previous measurements in Nanjing, confirming the general and distinct mixing states of TMA and DEA particles. Positive matrix factorization analysis revealed that the total fraction of the more oxidized organics factor and the less oxidized organics factor were much higher in the DEA particles (26.9 %) than in the TMA particles (9 %), confirming the significant enrichment of oxygenated species in the DEA particles. The different mixing states of the amines revealed the unique response of each type of amine to the same atmospheric environment, and the prominent mixing states of the DEA with secondary oxygenated species suggest the potential role of DEA in tracing the evolution of organic aerosols.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Aminas , China , Carbón Mineral , Polvo , Monitoreo del Ambiente/métodos , Nitratos , Material Particulado/análisis
5.
Sci Total Environ ; 783: 146962, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33866183

RESUMEN

Recently, internal mixing states of oxalate with metals in single particles have been reported from field studies, yet the role of metals in the formation processes of oxalate remains unclear due to the diversity of chemical components and complex atmospheric environment. In this study, the mixing states of oxalate with five metals, including zinc (Zn), copper (Cu), lead (Pb), vanadium (V) and iron (Fe) were investigated in Guangzhou, China. It was found that 55% of oxalate-containing particles were internally mixed with these metals. The number fraction of oxalate in the metal-containing particles ranged from 5.4-26%, which is much higher than that in the total detected particles (4.0%), indicating significant enrichment of oxalate in the metal-containing particles. Enhanced oxalate production was found in the Fe- and V-containing particles based on distinctly higher relative peak area (RPA) ratios of oxalate to its precursors compared to the total particles, possibly due to enhanced aqueous phase reactions in the Fe- and V-containing particles. However, enrichment of oxalate in the Zn-, Pb-, and Cu-containing particles was possibly associated with complexation of gas phase oxalic acid with the metals, as indicated by the small increase in RPA ratios in these particles. On the other hand, the internal mixing of oxalate with metals was found to provide a way of efficient photolysis of oxalate-metal complexes, which led to a decrease in oxalate after sunrise in the metal-containing particles. In this study, the enhanced mixing states of oxalate with metals have revealed the important role of metals in the production and degradation of oxalate, providing insights for the evaluation of metals in the formation processes of organic aerosol in field studies, which is beneficial to the further study of air pollution in metal emission areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA