Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Cell ; 35(8): br15, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985518

RESUMEN

Aneuploidy is nearly ubiquitous in tumor genomes, but the role of aneuploidy in the early stages of cancer evolution remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigated how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Previous work implicated p53 activation as a downstream response to aneuploidy induction. We found that simple aneuploidy, characterized by 1-3 gained or lost chromosomes, resulted in little or modest p53 activation and cell cycle arrest when compared with more complex aneuploid cells. Single-cell RNA sequencing analysis revealed that the degree of p53 activation was strongly correlated with karyotype complexity. Single-cell tracking showed that cells could continue to divide despite the observation of one to a few lagging chromosomes. Unexpectedly, colonoids with simple aneuploidy exhibited impaired differentiation after niche factor withdrawal. These findings demonstrate that simple aneuploid cells can escape p53 surveillance and may contribute to niche factor-independent growth of cancer-initiating colon stem cells.


Asunto(s)
Aneuploidia , Diferenciación Celular , Proliferación Celular , Organoides , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Organoides/metabolismo , Colon/metabolismo , Intestinos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Puntos de Control del Ciclo Celular/genética , Transformación Celular Neoplásica/genética
2.
bioRxiv ; 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37790420

RESUMEN

Aneuploidy, a near ubiquitous genetic feature of tumors, is a context-dependent driver of cancer evolution; however, the mechanistic basis of this role remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigate how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Single-cell RNA sequencing reveals that the gene expression signature across over 100 unique aneuploid karyotypes is enriched with p53 responsive genes. The primary driver of p53 activation is karyotype complexity. Complex aneuploid cells with multiple unbalanced chromosomes activate p53 and undergo G1 cell-cycle arrest, independent of DNA damage and without evidence of senescence. By contrast, simple aneuploid cells with 1-3 chromosomes gained or lost continue to proliferate, demonstrated by single cell tracking in colonoids. Notably, simple aneuploid cells exhibit impaired differentiation when niche factors are withdrawn. These findings suggest that while complex aneuploid cells are eliminated from the normal epithelium due to p53 activation, simple aneuploid cells can escape this checkpoint and may contribute to niche factor-independent growth of cancer-initiating cells.

3.
Front Oncol ; 11: 786913, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35070992

RESUMEN

Macrophages play critical roles in tumor progression. In the tumor microenvironment, macrophages display highly diverse phenotypes and may perform antitumorigenic or protumorigenic functions in a context-dependent manner. Recent studies have shown that macrophages can be engineered to transport drug nanoparticles (NPs) to tumor sites in a targeted manner, thereby exerting significant anticancer effects. In addition, macrophages engineered to express chimeric antigen receptors (CARs) were shown to actively migrate to tumor sites and eliminate tumor cells through phagocytosis. Importantly, after reaching tumor sites, these engineered macrophages can significantly change the otherwise immune-suppressive tumor microenvironment and thereby enhance T cell-mediated anticancer immune responses. In this review, we first introduce the multifaceted activities of macrophages and the principles of nanotechnology in cancer therapy and then elaborate on macrophage engineering via nanotechnology or genetic approaches and discuss the effects, mechanisms, and limitations of such engineered macrophages, with a focus on using live macrophages as carriers to actively deliver NP drugs to tumor sites. Several new directions in macrophage engineering are reviewed, such as transporting NP drugs through macrophage cell membranes or extracellular vesicles, reprogramming tumor-associated macrophages (TAMs) by nanotechnology, and engineering macrophages with CARs. Finally, we discuss the possibility of combining engineered macrophages and other treatments to improve outcomes in cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA