Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.273
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 50-61, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003066

RESUMEN

With the increasing severity of arsenic (As) pollution, quantifying the environmental behavior of pollutant based on numerical model has become an important approach to determine the potential impacts and finalize the precise control strategies. Taking the industrial-intensive Jinsha River Basin as typical area, a two-dimensional hydrodynamic water quality model coupled with Soil and Water Assessment Tool (SWAT) model was developed to accurately simulate the watershed-scale distribution and transport of As in the terrestrial and aquatic environment at high spatial and temporal resolution. The effects of hydro-climate change, hydropower station construction and non-point source emissions on As were quantified based on the coupled model. The result indicated that higher As concentration areas mainly centralized in urban districts and concentration slowly decreased from upstream to downstream. Due to the enhanced rainfall, the As concentration was significantly higher during the rainy season than the dry season. Hydro-climate change and the construction of hydropower station not only affected the dissolved As concentration, but also affected the adsorption and desorption of As in sediment. Furthermore, As concentration increased with the input of non-point source pollution, with the maximum increase about 30%, resulting that non-point sources contributed important pollutant impacts to waterways. The coupled model used in pollutant behavior analysis is general with high potential application to predict and mitigate water pollution.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Arsénico/análisis , China , Contaminantes Químicos del Agua/análisis , Ríos/química , Monitoreo del Ambiente/métodos , Modelos Químicos , Modelos Teóricos
2.
Am J Transl Res ; 16(7): 2931-2939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114732

RESUMEN

OBJECTIVE: To compare the efficacy and safety of different asparaginase formulations in the treatment of acute lymphoblastic leukemia (ALL) based on nano-magnetic bead immunoassay. METHODS: Retrospective analysis of adult ALL patients' clinical data who admitted to The Affiliated Hospital of Changsha Health Vocational College from August 2020 to August 2023. Finally, 65 adult ALL patients were included in this study, including the polyethylene glycol conjugated asparaginase (PEG-ASNase) group (n = 32) and the L-asparaginase (L-ASNase) group (n = 33). Enzyme-linked immunosorbent assay (ELISA) based on magnetic nanoparticles was used to determine the activity of ASNase in both groups. The levels of asparagine or glutamine in two groups were detected by automatic biochemical analyzer during induction therapy, and the adverse events of the two groups were observed during the treatment. RESULTS: PEG-ASNase demonstrated a slower decrease in enzyme activity, longer action duration, and higher safety profile compared to L-ASNase. PEG-ASNase group and L-ASNase group demonstrated a similar complete remission rate (71.88% vs. 60.61%). Event-free survival was higher in patients receiving PEG-ASNase than those receiving L-ASNase (42.4% and 18.7%). The observed adverse reactions included allergic reactions, pancreatic lesions, gastrointestinal reactions and liver function damage. The incidence of gastrointestinal reactions and liver function damage was higher in the L-ASNase group than that in PEG-ASNase group (45.45% and 33.33%). CONCLUSION: This study provides valuable insights into the asparaginase treatments in clinical, highlighting the importance of PEG-ASNase for improving treatment protocols in adult ALL patients.

3.
Sci Total Environ ; 950: 175273, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111416

RESUMEN

Northern peatlands are important carbon pools; however, differences in the structure and function of microbiomes inhabiting contrasting geochemical zones within these peatlands have rarely been emphasized. Using 16S rRNA gene sequencing, metagenomic profiling, and detailed geochemical analyses, we investigated the taxonomic composition and genetic potential across various geochemical zones of a typical northern peatland profile in the Changbai Mountains region (Northeastern China). Specifically, we focused on elucidating the turnover of organic carbon, sulfur (S), nitrogen (N), and methane (CH4). Three geochemical zones were identified and characterized according to porewater and solid-phase analyses: the redox interface (<10 cm), shallow peat (10-100 cm), and deep peat (>100 cm). The redox interface and upper shallow peat demonstrated a high availability of labile carbon, which decreased toward deeper peat. In deep peat, anaerobic respiration and methanogenesis were likely constrained by thermodynamics, rather than solely driven by available carbon, as the acetate concentrations reached 90 µmol·L-1. Both the microbial community composition and metabolic potentials were significantly different (p < 0.05) among the redox interface, shallow peat, and deep peat. The redox interface demonstrated a close interaction between N, S, and CH4 cycling, mainly driven by Thermodesulfovibrionia, Bradyrhizobium, and Syntrophorhabdia metagenome-assembled genomes (MAGs). The archaeal Bathyarchaeia were indicated to play a significant role in the organic carbon, N, and S cycling in shallow peat. Although constrained by anaerobic respiration and methanogenesis, deep peat exhibited a higher metabolic potential for organic carbon degradation, primarily mediated by Acidobacteriota. In terms of CH4 turnover, subsurface peat (10-20 cm) was a CH4 production hotspot, with a net turnover rate of ∼2.9 nmol·cm-3·d-1, while the acetoclastic, hydrogenotrophic, and methylotrophic methanogenic pathways all potentially contributed to CH4 production. The results of this study improve our understanding of biogeochemical cycles and CH4 turnover along peatland profiles.

4.
Adv Mater ; : e2408330, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096066

RESUMEN

Supramolecular adhesion material systems based on small molecules have shown great potential to unite the great contradiction between strong adhesion and reversibility. However, these material systems suffer from low adhesion strength/narrow adhesion span, limited designability, and single interaction due to fewer covalent bond content and action sites in small molecules. Herein, an ultrahigh-strength and large-span reversible adhesive enabled by a branched oligomer controllable self-aggregation strategy is developed. The dense covalent bonds present in the branched oligomers greatly enhance adhesion strength without compromising reversibility. The resulting adhesive exhibits a large-span reversible adhesion of ≈140 times, switching between ultra-strong and tough adhesion strength (5.58 MPa and 5093.92 N m-1) and ultralow adhesion (0.04 MPa and 87.656 N m-1) with alternating temperature. Moreover, reversible dynamic double cross-linking endows the adhesive with stable reversible adhesion transitions even after 100 cycles. This reversible adhesion property can also be remotely controlled via a voltage of 8 V, with a loading voltage duration of 45 s. This work paves the way for the design of reversible adhesives with long-span outstanding properties using covalent polymers and offers a pathway for the rational design of high-performance adhesives featuring both robust toughness and exceptional reversibility.

5.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39087533

RESUMEN

ReaxFF reactive molecular dynamics has significantly advanced the exploration of chemical reaction mechanisms in complex systems. However, it faces several challenges: (1) the prevalent use of excessively high temperatures (>2000 K), (2) a time scale considerably shorter than the experimental timeframes (nanoseconds vs seconds), and (3) the constraining impact of dimensionality growth due to collective variables on the expansiveness of research systems. To overcome these issues, we introduced Parallel Collective Variable-Driven Adaptive Accelerated Reaction Molecular Dynamics (PCVR), which integrates metadynamics with ReaxFF. This method incorporates bond distortion based on each bond type for customized Collective Variable (CV) parameterization, facilitating independent parallel acceleration. Simultaneously, the sampling was confined to fixed cutoff ranges for distinct bond distortions, effectively overcoming the challenge of the CV dimensionality explosion. This extension enhances the applicability of ReaxFF to non-strongly coupled systems with numerous reaction energy barriers and mitigates the system size limitations. Using accelerated reactive molecular dynamics, the oxidation of ester-based oil was simulated with 31 808 atoms at 500 K for 64 s. This achieved 61% efficiency compared to the original ReaxFF and was ∼37 times faster than previous methods. Unlike ReaxFF's high-temperature constraints, PCVR accurately reveals the pivotal role of oxygen in ester oxidation at industrial temperatures, producing polymers consistent with the sludge formation observed in ester degradation experiments. This method promises to advance reactive molecular dynamics by enabling simulations at lower temperatures, extending to second-level timescales, and accommodating systems with millions of atoms.

6.
Ultrason Sonochem ; 109: 107019, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39126989

RESUMEN

The electrodeposition process confronts significant challenges arising from mass transfer limitation and residual stress. To address these issues, an innovative method, combining megasonic agitation with coaxial jet electrodeposition, is introduced. This approach aims to enhance mass transfer and mitigate residual stress. First, an electrodeposition nozzle device was designed, and the liquid-phase mass transfer during electrodeposition was analyzed through finite element simulation. Simulation results indicate that the mass transfer coefficient increases with rising megasonic power density. Notably, when the megasonic power density reached 20 W/cm2, the mass transfer coefficient increased from 0.45 × 10-7 m/s to 18.63 × 10-7 m/s, compared to electrodeposition without megasonic agitation. Secondly, electrodeposition experiments were conducted both with and without megasonic assistance. X-ray diffraction (XRD) was employed to measure the residual stress values of the electrodeposited layers. The results reveal that samples processed with megasonic assistance exhibit lower residual stress values compared to those without. Specifically, at a megasonic power density of 10 W/cm2, the residual stress was 94.3 MPa, representing a 37.7 % reduction compared to the residual stress of 151.5 MPa observed in samples without megasonic agitation. Overall, the findings demonstrate that coaxial megasonic agitation can effectively enhance the liquid-phase mass transfer capability during electrodeposition and reduce the residual stress of the electroplated layer. This innovative method presents a promising avenue for improving electrodeposition processes and achieving superior material properties.

7.
AAPS PharmSciTech ; 25(6): 183, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138765

RESUMEN

The dissolution and bioavailability challenges posed by poorly water-soluble drugs continue to drive innovation in pharmaceutical formulation design. Nintedanib (NDNB) is a typical BCS class II drug that has been utilized to treat idiopathic pulmonary fibrosis (IPF). Due to the low solubility, its oral bioavailability is relatively low, limiting its therapeutical effectiveness. It is crucial to enhance the dissolution and the oral bioavailability of NDNB. In this study, we focused on the preparation of amorphous solid dispersions (ASD) using hot melt extrusion (HME). The formulation employed Kollidon® VA64 (VA64) as the polymer matrix, blended with the NDNB at a ratio of 9:1. HME was conducted at temperatures ranging from 80 °C to 220 °C. The successful preparation of ASD was confirmed through various tests including polarized light microscopy (PLM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The in-vitro cumulative release of NDNB-ASD in 2 h in a pH 6.8 medium was 8.3-fold higher than that of NDNB (p < 0.0001). In a pH 7.4 medium, it was 10 times higher (p < 0.0001). In the in-vivo pharmacokinetic experiments, the area under curve (AUC) of NDNB-ASD was 5.3-fold higher than that of NDNB and 2.2 times higher than that of commercially available soft capsules (Ofev®) (p < 0.0001). There was no recrystallization after 6 months under accelarated storage test. Our study indicated that NDNB-ASD can enhance the absorption of NDNB, thus providing a promising method to improve NDNB bioavailability in oral dosages.


Asunto(s)
Disponibilidad Biológica , Indoles , Solubilidad , Indoles/farmacocinética , Indoles/química , Indoles/administración & dosificación , Administración Oral , Animales , Química Farmacéutica/métodos , Rastreo Diferencial de Calorimetría/métodos , Difracción de Rayos X/métodos , Masculino , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Composición de Medicamentos/métodos , Conejos , Polímeros/química , Tecnología de Extrusión de Fusión en Caliente/métodos , Liberación de Fármacos
8.
Small ; : e2404435, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140644

RESUMEN

Conductive hydrogels have attracted widespread attention in the fields of biomedicine and health monitoring. However, their practical application is severely hindered by the lengthy and energy-intensive polymerization process and weak mechanical properties. Here, a rapid polymerization method of polyacrylic acid/gelatin double-network organohydrogel is designed by integrating tannic acid (TA) and Ag nanoparticles on conductive MXene nanosheets as catalyst in a binary solvent of water and glycerol, requiring no external energy input. The synergistic effect of TA and Ag NPs maintains the dynamic redox activity of phenol and quinone within the system, enhancing the efficiency of ammonium persulfate to generate radicals, leading to polymerization within 10 min. Also, ternary composite MXene@TA-Ag can act as conductive agents, enhanced fillers, adhesion promoters, and antibacterial agents of organohydrogels, granting them excellent multi-functionality. The organohydrogels exhibit excellent stretchability (1740%) and high tensile strength (184 kPa). The strain sensors based on the organohydrogels exhibit ultrahigh sensitivity (GF = 3.86), low detection limit (0.1%), and excellent stability (>1000 cycles, >7 days). These sensors can monitor the human limb movements, respiratory and vocal cord vibration, as well as various levels of arteries. Therefore, this organohydrogel holds potential for applications in fields such as human health monitoring and speech recognition.

9.
Nanomicro Lett ; 16(1): 267, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39134809

RESUMEN

Flexible and wearable pressure sensors hold immense promise for health monitoring, covering disease detection and postoperative rehabilitation. Developing pressure sensors with high sensitivity, wide detection range, and cost-effectiveness is paramount. By leveraging paper for its sustainability, biocompatibility, and inherent porous structure, herein, a solution-processed all-paper resistive pressure sensor is designed with outstanding performance. A ternary composite paste, comprising a compressible 3D carbon skeleton, conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), and cohesive carbon nanotubes, is blade-coated on paper and naturally dried to form the porous composite electrode with hierachical micro- and nano-structured surface. Combined with screen-printed Cu electrodes in submillimeter finger widths on rough paper, this creates a multiscale hierarchical contact interface between electrodes, significantly enhancing sensitivity (1014 kPa-1) and expanding the detection range (up to 300 kPa) of as-resulted all-paper pressure sensor with low detection limit and power consumption. Its versatility ranges from subtle wrist pulses, robust finger taps, to large-area spatial force detection, highlighting its intricate submillimeter-micrometer-nanometer hierarchical interface and nanometer porosity in the composite electrode. Ultimately, this all-paper resistive pressure sensor, with its superior sensing capabilities, large-scale fabrication potential, and cost-effectiveness, paves the way for next-generation wearable electronics, ushering in an era of advanced, sustainable technological solutions.

10.
J Diabetes ; 16(8): e13595, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136536

RESUMEN

BACKGROUND: To estimate glucose disposal rate (eGDR) as a newly validated surrogate marker of insulin resistance. Few studies have explored the association between changes in eGDR levels and stroke incidence. This study aims to explore the effect of the level of eGDR control on stroke and events. METHODS: Data were obtained from the China Longitudinal Study on Health and Retirement (CHARLS). The eGDR control level was classified using K-means cluster analysis. Logistic regression analysis was used to explore the association between different eGDR control levels and incident stroke. Restrictive cubic spline regression was used to test the potential nonlinear association between cumulative eGDR and stroke incidence. RESULTS: Of the 4790 participants, 304 (6.3%) had a stroke within 3 years. The odds ratio (OR) was 2.34 (95% confidence interval [CI], 1.42-3.86) for the poorly controlled class 4 and 2.56 (95% CI, 1.53-4.30) for the worst controlled class 5 compared with class 1 with the best controlled eGDR. The OR for well-controlled class 2 was 1.28 (95% CI, 0.79-2.05), and the OR for moderately controlled class 3 was 1.95 (95% CI, 1.14-3.32). In restrictive cubic spline regression analysis, eGDR changes are linearly correlated with stroke occurrence. Weighted quartile and regression analysis identified waist circumference and hypertension as key variables of eGDR for predicting incident stroke. CONCLUSIONS: Poorly controlled eGDR level is associated with an increased risk of stroke in middle-aged and elderly people. Monitoring changes in eGDR may help identify individuals at high risk of stroke early.


Asunto(s)
Glucemia , Resistencia a la Insulina , Accidente Cerebrovascular , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/epidemiología , Femenino , Incidencia , Anciano , China/epidemiología , Glucemia/metabolismo , Glucemia/análisis , Estudios Longitudinales , Factores de Riesgo , Biomarcadores/sangre
11.
Mar Pollut Bull ; 207: 116793, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153430

RESUMEN

Phosphorus (P) is an essential biogenic element in ecosystems; but excessive or insufficient P in coastal waters caused by human activities has led to serious ecological issues. However, the understanding of the dynamic processes of different P forms in high turbidity estuaries/bays, as well as their impact on eutrophication and coastal algal blooms, is still relatively limited. To address this issue, we analyzed P dynamics and their impact on eutrophication in Hangzhou Bay (HZB), which is typical of eutrophic and turbid bay worldwide. The concentration of particulate P (PTP) was 3-5 times higher than that of dissolved inorganic phosphorus (DIP). Seasonal sediment resuspension led to the accumulation of suspended particulate matter (SPM) and PTP with regional variation, both maintaining DIP concentrations above 1 µmol/L within the bay. Furthermore, 3000 tons of bioavailable P were retained in the fine-grained SPM, with the potential for outward transport, fueling subsequent harmful algal blooms. A comparative analysis of global coastal waters highlighted that different turbidity levels significantly affect P cycling. Therefore, understanding the relationship between SPM and P in highly turbid waters is crucial for effective management of eutrophication.

12.
Cell Death Dis ; 15(8): 598, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153998

RESUMEN

The mechanisms underlying tissue repair in response to damage have been one of main subjects of investigation. Here we leverage the wound-induced hair neogenesis (WIHN) models in adult mice to explore the correlation between degree of damage and the healing process and outcome. The multimodal analysis, in combination with single-cell RNA sequencing help to explore the difference in wounds of gentle and heavy damage degrees, identifying the potential role of toll-like receptor 9 (TLR9) in sensing the injury and regulating the immune reaction by promoting the migration of γδT cells. The TLR9 deficient mice or wounds injected with TLR9 antagonist have greatly impaired healing and lower WIHN levels. Inhibiting the migration of γδT cells or knockout of γδT cells also suppress the wound healing and regeneration, which can't be rescued by TLR9agonist. Finally, the amphiregulin (AREG) is shown as one of most important effectors secreted by γδT cells and keratinocytes both in silicon or in the laboratory, whose expression influences WIHN levels and the expression of stem cell markers. In total, our findings reveal a previously unrecognized role for TLR9 in sensing skin injury and influencing the tissue repair and regeneration by modulation of the migration of γδT cells, and identify the TLR9-γδT cells-areg axis as new potential targets for enhancing tissue regeneration.


Asunto(s)
Folículo Piloso , Regeneración , Receptor Toll-Like 9 , Cicatrización de Heridas , Animales , Folículo Piloso/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Ratones , Ratones Endogámicos C57BL , Anfirregulina/metabolismo , Anfirregulina/genética , Movimiento Celular , Ratones Noqueados , Queratinocitos/metabolismo , Linfocitos Intraepiteliales/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-39113176

RESUMEN

Tissue-inspired layered structural hydrogel has attracted increasing attention in artificial muscle, wound healing, wearable electronics, and soft robots. Despite numerous efforts being devoted to developing various layered hydrogels, the rapid and efficient preparation of layered hydrogels remains challenging. Herein, inspired by the self-growth concept of living organisms, an interfacial catalytic self-growth strategy based on catechol chemistry-mediated self-catalytic system of preparing layered hydrogels is demonstrated. Typically, the tannic acid-metal ion (e.g., TA-Fe3+) complex embedded in the hydrogel substrate would catalytically trigger rapid solid-liquid interfacial polymerization to grow the hydrogel layer without bulk solution polymerization. The self-growth process can be finely controlled by changing the growth time, the molar ratio of Fe3+/TA, and so on. The strategy is applicable to prepare various layered hydrogels as well as complex layered hydrogel patterns, allowing the customization of the physicochemical properties of the hydrogel. In addition, the self-adhesive layered hydrogel was prepared and can be utilized as a wearable strain sensor to monitor physiological activities and human motions. The demonstrated interfacial catalytic self-growth strategy will provide a route to design and fabricate layered hydrogel materials.

14.
Heliyon ; 10(14): e34374, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39113969

RESUMEN

Silty soil was widely used as filling soil materials for the replacement of expansive soil in cold regions. This paper presents a straightforward approach for the effects of wetting-drying-freezing-thawing cycles on mechanical behaviors of silty soil and expansive soil by laboratory tests. The results showed that the silty soil and expansive soil after 7th wetting-drying-freezing-thawing cycles presented the decreases of elastic modulus, failure strength, cohesion and angel of internal friction by 8.9 %∼12.0 %, 7.7 %∼9.0 %, 7.9 %, 4.5 % and 17.6 %∼37.0 %, 20.5 %∼29.4 %, 43.2 %, 13.0 %, respectively, indicating that wetting-drying-freezing-thawing cycles had little impact on mechanical property of silty soil and a great influence on that of expansive soil. Among them, the mechanical property attenuation ratio in the first three wetting-drying-freezing-thawing cycles accounted for over 90 % of the total. In the meantime, the micro-structure damage, surface crack characteristics and grain size distribution variations of expansive soil were all more significantly than these of silty soil exposed to wetting-drying-freezing-thawing cycles, which brought insight into the causes of the differences in mechanical properties for silty soil and expansive soil. It is found that the silty soil properties were more stable than expansive soil properties, and the silty soil is very effective for replacing the expansive soil below canal structures in cold regions.

15.
J Thorac Dis ; 16(7): 4440-4446, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39144330

RESUMEN

Background: Serum pro-gastrin releasing peptide (proGRP) is a well-recognized diagnostic marker for small cell lung cancer (SCLC). Pleural effusion is common in patients with advanced SCLC. The diagnostic accuracy of pleural proGRP for malignant pleural effusion (MPE) has not yet been established. This study aimed to evaluate the diagnostic accuracy of pleural proGRP for MPE. Methods: We prospectively recruited patients with undiagnosed pleural effusions from two centers (Hohhot and Changshu). An electrochemiluminescence immunoassay was used to detect pleural fluid proGRP. The diagnostic accuracy of proGRP for MPE was evaluated using a receiver operating characteristic (ROC) curve. Results: In both the Hohhot (n=153) and Changshu (n=58) cohorts, pleural proGRP in MPE patients did not significantly differ from that in patients with benign pleural effusions (BPEs) (Hohhot, P=0.91; Changshu, P=0.12). In the Hohhot and Changshu cohorts, the areas under the curves (AUCs) of proGRP were 0.51 [95% confidence interval (CI): 0.41-0.60] and 0.62 (95% CI: 0.47-0.77), respectively. However, patients with SCLC-induced MPE had significantly higher proGRP levels than those with BPE and other types of MPE (P=0.001 for both). In the pooled cohort, the AUC of proGRP for SCLC-induced MPE was 0.90 (95% CI: 0.78-1.00, P=0.001). At a threshold of 40 pg/mL, proGRP had a sensitivity of 1.00 (95% CI: 0.61-1.00) and specificity of 0.59 (95% CI: 0.52-0.66). The positive likelihood ratio was 2.61 (95% CI: 1.99-3.41), and the negative likelihood ratio was 0. Conclusions: Pleural proGRP has no diagnostic value for MPE, but has high diagnostic accuracy for SCLC-induced MPE. In patients with proGRP levels <40 pg/mL, MPE secondary to SCLC can be excluded.

16.
Mar Pollut Bull ; 207: 116824, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128233

RESUMEN

The microorganism in rhizosphere systems has the potential to regulate the migration of arsenic (As) in coastal tidal flat wetlands. This study investigates the microbial community in the iron plaque and rhizosphere soils of Spartina alterniflora (S. alterniflora) and Suaeda salsa (S. salsa), as two common coastal tidal flat wetland plants in China, and determines the impact of the As and Fe redox bacteria on As mobility using field sampling and 16S rDNA high-throughput sequencing. The results indicated that As bound to crystalline Fe in the Fe plaque of S. salsa in high tidal flat. In the Fe plaque, there was a decrease in the presence of Fe redox bacteria, while the presence of As redox bacteria increased. Thus, the formation of Fe plaque proved advantageous in promoting the growth of As redox bacteria, thereby aiding in the mobility of As from rhizosphere soils to the Fe plaque. As content in the Fe plaque and rhizosphere soils of S. alterniflora was found to be higher than that of S. salsa. In the Fe plaque, As/Fe-reducing bacteria in S. alterniflora, and As/Fe-oxidizing bacteria in S. salsa significantly affected the distribution of As in rhizosphere systems. S. alterniflora has the potential to be utilized for wetland remediation purposes.

17.
Heliyon ; 10(14): e34684, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130428

RESUMEN

We theoretically present a broadband modulator based on graphene/black phosphorus heterostructure which can work over a large waveband from visible (VIS) to mid-infrared (MIR) regions. By utilizing the angle dependence of black phosphorus, surface plasmon polaritons (SPP) modulation can be achieved in VIS regime, while the wavelength is tuned within the near-infrared (NIR) or MIR regions, the enhanced modulation depth can be achieved by few-layer graphene films. Results show that the proposed plasmonic modulator exhibits a broad waveband from 400 nm to 3 µm. In addition, this proposed modulator features high modulation depth (MD), low insertion loss (IL), large 3-dB modulation bandwidth and small power consumption from VIS to MIR regions. Our work may extend the operation waveband of opto-electro devices based on the hybridized 2D materials and would promote their potential future applications.

18.
BMC Psychiatry ; 24(1): 509, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020327

RESUMEN

BACKGROUND: Developmental dyslexia, a complex neurodevelopmental disorder, not only affects children's academic performance but is also associated with increased healthcare costs, lower employment rates, and reduced productivity. The pathogenesis of dyslexia remains unclear and it is generally considered to be caused by the overlap of genetic and environmental factors. Systematically exploring the close relationship between exposure to environmental compounds and susceptibility genes in the development of dyslexia is currently lacking but high necessary. METHODS: In this study, we systematically compiled 131 publicly reported susceptibility genes for dyslexia sourced from DisGeNET, OMIM, and GeneCards databases. Comparative Toxicogenomics Database database was used to explore the overlap between susceptibility genes and 95 environmental compounds, including metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, and pesticides. Chemical bias towards the dyslexia risk genes was taken into account in the observation/expectation ratios > 1 and the corresponding P value obtained by hypergeometric probability test. RESULTS: Our study found that the number of dyslexia risk genes targeted by each chemical varied from 1 to 109. A total of 35 chemicals were involved in chemical reactions with dyslexia-associated genes, with significant enrichment values (observed/expected dyslexia risk genes) ranging from 1.147 (Atrazine) to 66.901 (Dibenzo(a, h)pyrene). CONCLUSION: The results indicated that dyslexia-associated genes were implicated in certain chemical reactions. However, these findings are exploratory, and further research involving animal or cellular experiments is needed.


Asunto(s)
Dislexia , Contaminantes Ambientales , Predisposición Genética a la Enfermedad , Humanos , Dislexia/genética , Predisposición Genética a la Enfermedad/genética , Contaminantes Ambientales/efectos adversos , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Toxicogenética
19.
Small ; : e2403303, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031810

RESUMEN

Lubricating hydrogel coatings on inert rubber and plastic surfaces significantly reduce friction and wear, thus enhancing material durability and lifespan. However, achieving optimal hydration lubrication typically requires a porous polymer network, which unfortunately reduces their mechanical strength and limits their applicability where robust durability and wear-resistance are essential. In the research, a hydrogel coating with remarkable wear resistance and surface stability is developed by forming a semi-interpenetrating polymer network with polymer substrate at the interface. By employing a good solvent swelling method, monomers, and photoinitiators are embedded within the substrates' subsurface, followed by in situ polymerization under ultraviolet light, creating a robust semi-interpenetrating and entangled network structure. This approach, offering a thicker energy-dissipating layer, outperforms traditional surface modifications in wear resistance while preserving anti-fatigue, hydrophilicity, oleophobicity, and other properties. Adaptable to various rubber and plastic substrates by using suitable solvents, this method provides an efficient solution for creating durable, lubricating surfaces, broadening the potential applications in multiple industries.

20.
Small ; : e2404556, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032001

RESUMEN

Silicon (Si) is a promising anode material for high-energy-density lithium-ion batteries, but the significant volume change of Si particles during alloying/dealloying with lithium (Li) undermines the mechanical integrity of Si anode, causing electrode fracture, delamination and rapid capacity decay. Herein, a robust triple crosslinked network (TCN) binder with high ionic conductivity and hierarchical stress dissipation is reported for Si anodes, which is prepared by in situ chemical crosslinking polyacrylic acid (PAA) and melamine (MA). The triple interactions of hydrogen bonds, electrostatic interactions, and covalent amide bonds enhance the adhesion of binder to Si and synergistically promote stress dissipation within Si anodes, thus strengthening the dynamic structural stability of Si anodes during cycling. Moreover, the rapid coupling/decoupling of Li+ with the TCN binder enables an impressive Li+ transference number of 0.63 and high ionic conductivity of 1.2 × 10-4 S cm-1. Consequently, the Si-TCN anode delivers specific capacity of 2268 mAh g-1 with a high mass loading of 2 mg cm-2, high-rate performance of 1673 mAh g-1 at 5 A g-1, and stable cycling for 250 cycles at 1 A g-1, thus showing great prospects for high-energy-density Si-based batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA