Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Arch Virol ; 169(8): 165, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990253

RESUMEN

Monilinia fructicola is one of the most devastating fungal diseases of rosaceous fruit crops, both in the field and postharvest, causing significant yield losses. Here, we report the discovery of a novel positive single-stranded RNA virus, Monilinia fructicola hypovirus 3 (MfHV3), in a strain (hf-1) of the phytopathogenic fungus Monilinia fructicola. The complete genome of MfHV3 is 9259 nucleotides (nt) in length and contains a single large open reading frame (ORF) from nt position 462 to 8411. This ORF encodes a polyprotein with three conserved domains, namely UDP-glycosyltransferase, RNA-dependent RNA polymerase (RdRp), and DEAD-like helicase. The MfHV3 polyprotein shares the highest similarity with Colletotrichum camelliae hypovirus 1. Phylogenetic analysis indicated that MfHV3 clustered with members of the genus Betahypovirus within the family Hypoviridae. Taken together, the results of genomic organization comparisons, amino acid sequence alignments, and phylogenetic analysis convincingly show that MfHV3 is a new member of the genus Betahypovirus, family Hypoviridae.


Asunto(s)
Ascomicetos , Virus Fúngicos , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Ascomicetos/virología , Ascomicetos/genética , Virus Fúngicos/genética , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , ARN Viral/genética , Proteínas Virales/genética , Secuenciación Completa del Genoma , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Polimerasa Dependiente del ARN/genética , Secuencia de Aminoácidos
2.
World J Clin Cases ; 12(19): 3978-3984, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38994307

RESUMEN

BACKGROUND: Congenital sideroblastic anemia (CSA) is a rare and heterogeneous group of genetic disorders. Conventional treatment include pyridoxine (vitamin B6) and allogeneic hematopoietic stem cell transplantation (allo-HSCT), and can alleviate anemia in the majority of cases. Nevertheless, some CSA cases remain unresponsive to pyridoxine or are unable to undergo allo-HSCT. Novel management approaches is necessary to be developed. To explore the response of luspatercept in treating congenital sideroblastic anemia. CASE SUMMARY: We share our experience in luspatercept in a 4-year-old male patient with CSA. Luspatercept was administered subcutaneously at doses of 1.0 mg/kg/dose to 1.25 mg/kg/dose every 3 wk, three consecutive doses, evaluating the hematological response. Luspatercept leading to a significant improvement in the patient's anemia. The median hemoglobin during the overall treatment with three doses of luspatercept was 90 (75-101) g/L, the median absolute reticulocyte count was 0.0593 (0.0277-0.1030) × 1012/L, the median serum ferritin was 304.3 (234.4-399) ng/mL, and the median lifespan of mature red blood cells was 80 (57-92) days. Notably, no adverse reactions, such as headaches, dizziness, vomiting, joint pain, or back pain, were observed during the treatment period. CONCLUSION: We believe that luspatercept might emerge as a viable therapeutic option for the maintenance treatment of CSA or as a bridging treatment option before hematopoietic stem cell transplantation.

3.
bioRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39026688

RESUMEN

Many protein-protein interactions behave differently in biochemically purified forms as compared to their in vivo states. As such, determining native protein structures may elucidate structural states previously unknown for even well-characterized proteins. Here we apply the bottom-up structural proteomics method, cryoID , toward a model methanogenic archaeon. While they are keystone organisms in the global carbon cycle and active members of the human microbiome, there is a general lack of characterization of methanogen enzyme structure and function. Through the cryoID approach, we successfully reconstructed and identified the native Methanosarcina acetivorans pyridoxal 5'-phosphate (PLP) synthase (PdxS) complex directly from cryogenic electron microscopy (cryoEM) images of fractionated cellular lysate. We found that the native PdxS complex exists as a homo-dodecamer of PdxS subunits, and the previously proposed supracomplex containing both the synthase (PdxS) and glutaminase (PdxT) was not observed in cellular lysate. Our structure shows that the native PdxS monomer fashions a single 8α/8ß TIM-barrel domain, surrounded by seven additional helices to mediate solvent and interface contacts. A density is present at the active site in the cryoEM map and is interpreted as ribose 5-phosphate. In addition to being the first reconstruction of the PdxS enzyme from a heterogeneous cellular sample, our results reveal a departure from previously published archaeal PdxS crystal structures, lacking the 37 amino acid insertion present in these prior cases. This study demonstrates the potential of applying the cryoID workflow to capture native structural states at atomic resolution for archaeal systems, for which traditional biochemical sample preparation is nontrivial.

4.
Small ; : e2403788, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994674

RESUMEN

0D organic-inorganic metal halides (OIMHs) provide unprecedented versatility in structures and photoluminescence properties. Here, a series of bluish-white emissive 0D OIMHs, (TPE-TPP)2Sb2BrxCl8-x (x = 1.16 to 8), are prepared by assembling the 1-triphenylphosphonium-4-(1,2,2-triphenylethenyl)benzene cation (TPE-TPP)+ with antimony halides anions. Based on experimental characterizations and theoretical calculations, the emission of the 0D OIMHs are attributed to the fluorescence of the organic cations with aggregation-induced emission (AIE) properties. The 0D structure minimized the molecular motion and intermolecular interactions between (TPE-TPP)+ cations, effectively suppressing the non-radiative recombination processes. Consequently, the photoluminescence quantum efficiency (PLQE) of (TPE-TPP)2Sb2Br1.16Cl6.84 is significantly enhanced to 55.4% as compared to the organic salt (TPE-TPP)Br (20.5%). The PLQE of (TPE-TPP)2Sb2BrxCl8-x can also be readily manipulated by halide substitution, due to the competitive processes between non-radiative recombination on the inorganic moiety and the energy transfer from inorganic to organic. In addition, electrically driven light-emitting diodes (LEDs) are fabricated based on (TPE-TPP)2Sb2Br1.16Cl6.84 emitter, which exhibited bluish-white emission with a maximum external quantum efficiency (EQE) of 1.1% and luminance of 335 cd m-2. This is the first report of electrically driven LED based on 0D OIMH with bluish-white emission.

5.
J Am Chem Soc ; 146(22): 15198-15208, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743271

RESUMEN

Various monovalent cations are employed to construct metal halide perovskites with various structures and functionalities. However, perovskites based on highly polar A-site cations have seldom been reported. Here, a novel hybrid 0D (NH4)x(OH3)3-xInCl6 perovskite with highly polar hydronium OH3+ cations is introduced in this study. Upon doping with Sb3+, hybrid 0D (NH4)x(OH3)3-xInCl6 single crystals exhibited highly efficient broadband yellowish-green (550 nm) and red (630 nm) dual emissions with a PLQY of 86%. The dual emission arises due to Sb3+ occupying two sites within the crystal lattice that possess different polarization environments, leading to distinct Stokes shift energies. The study revealed that lattice polarity plays a significant role in the self-trapped exciton emission of Sb3+-doped perovskites, contributing up to 25% of the Stokes shift energy for hybrid 0D (NH4)x(OH3)3-xInCl6:Sb3+ as a secondary source, in addition to the Jahn-Teller deformation. These findings highlight the potential of Sb3+-doped perovskites for achieving tunable broadband emission and underscore the importance of lattice polarity in determining the emission properties of perovskite materials.

6.
Phytochemistry ; 224: 114149, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763314

RESUMEN

Farnesylated chalcones were favored by researchers due to their different biological activities. However, only five naturally occurring farnesylated chalcones were described in the literature until now. Here, the farnesylation of six chalcones by the Aspergillus terreus aromatic prenyltransferase AtaPT was reported. Fourteen monofarnesylated chalcones (1F1-1F5, 2F1-2F3, 3F1, 3F2, 4F1, 4F2, 5F1, 6F1, and 6F2) and a difarnesylated product (2F3) were obtained, enriching the diversity of natural farnesylated chalcones significantly. Ten of them are C-farnesylated products, which complement O-farnesylated chalcones by chemical synthesis. Fourteen products have not been reported prior to this study. Nine of the produced compounds (1F2-1F5, 2F1-2F3, 5F1, and 6F1) exhibited inhibitory effect on α-glucosidase with IC50 values ranging from 24.08 ± 1.44 to 190.0 ± 0.28 µM. Among them, compounds 2F3 with IC50 value at 24.08 ± 1.44 µM and 1F4 with IC50 value at 30.09 ± 0.59 µM showed about 20 times stronger than the positive control acarbose with an IC50 at 536.87 ± 24.25 µM in α-glucosidase inhibitory assays.


Asunto(s)
Aspergillus , Chalconas , Dimetilaliltranstransferasa , Dimetilaliltranstransferasa/metabolismo , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/antagonistas & inhibidores , Chalconas/química , Chalconas/farmacología , Chalconas/metabolismo , Aspergillus/enzimología , Aspergillus/química , Estructura Molecular , Prenilación , Relación Estructura-Actividad , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Relación Dosis-Respuesta a Droga
7.
Small ; : e2402263, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716785

RESUMEN

Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as one of the most studied MOFs due to the unlimited numbers of organic linkers and the varying Zr-oxo clusters. However, the synthesis of carboxylic acids, especially multitopic carboxylic acids, is always a great challenge for the discovery of new Zr-MOFs. As an alternative approach, the in situ "one-pot" strategy can address this limitation, where the generation of organic linkers from the corresponding precursors and the sequential construction of MOFs are integrated into one solvothermal condition. Herein, inspired by benzimidazole-contained compounds synthesized via reaction of aldehyde and o-phenylenediamine, tri-, tetra-, penta- and hexa-topic carboxylic acids and a series of corresponding Zr-MOFs can be prepared via the in situ "one-pot" method under the same solvothermal conditions. This strategy can be utilized not only to prepare reported Zr-MOFs constructed using benzimidazole-contained linkers, but also to rationally design, construct and realize functionalities of zirconium-pentacarboxylate frameworks guided by reticular chemistry. More importantly, in situ "one-pot" method can facilitate the discovery of new Zr-MOFs, such as zirconium-hexacarboxylate frameworks. The present study demonstrates the promising potential of benzimidazole-inspired in situ "one-pot" approach in the crystal engineering of structure- and property-specific Zr-MOFs, especially with the guidance of reticular chemistry.

8.
Adv Sci (Weinh) ; 11(22): e2309824, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561966

RESUMEN

Precise agriculture based on intelligent agriculture plays a significant role in sustainable development. The agricultural Internet of Things (IoTs) is a crucial foundation for intelligent agriculture. However, the development of agricultural IoTs has led to exponential growth in various sensors, posing a major challenge in achieving long-term stable power supply for these distributed sensors. Introducing a self-powered active biochemical sensor can help, but current sensors have poor sensitivity and specificity making this application challenging. To overcome this limitation, a triboelectric nanogenerator (TENG)-based self-powered active urea sensor which demonstrates high sensitivity and specificity is developed. This device achieves signal enhancement by introducing a volume effect to enhance the utilization of charges through a novel dual-electrode structure, and improves the specificity of urea detection by utilizing an enzyme-catalyzed reaction. The device is successfully used to monitor the variation of urea concentration during crop growth with concentrations as low as 4 µm, without being significantly affected by common fertilizers such as potassium chloride or ammonium dihydrogen phosphate. This is the first self-powered active biochemical sensor capable of highly specific and highly sensitive fertilizer detection, pointing toward a new direction for developing self-powered active biochemical sensor systems within sustainable development-oriented agricultural IoTs.


Asunto(s)
Agricultura , Técnicas Biosensibles , Urea , Agricultura/métodos , Agricultura/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Nanotecnología/métodos , Nanotecnología/instrumentación , Fertilizantes/análisis , Diseño de Equipo , Suministros de Energía Eléctrica , Internet de las Cosas
9.
J Agric Food Chem ; 72(14): 8018-8026, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557039

RESUMEN

Phloretin is widely found in fruit and shows various biological activities. Here, we demonstrate the dimethylallylation, geranylation, and farnesylation, particularly the first dimethylallylation at the nonaromatic carbon of phloretin (1) by the fungal prenyltransferase AnaPT and its mutants. F265 was identified as a key amino acid residue related to dimethylallylation at the nonaromatic carbon of phloretin. Mutants AnaPT_F265D, AnaPT_F265G, AnaPT_F265P, AnaPT_F265C, and AnaPT_F265Y were discovered to generally increase prenylation activity toward 1. AnaPT_F265G catalyzes the O-geranylation selectively at the C-2' hydroxyl group, which involves an intramolecular hydrogen bond with the carbonyl group of 1. Seven products, 1D5, 1D7-1D9, 1G2, 1G4, and 1F2, have not been reported prior to this study. Twelve compounds, 1D3-1D9, 1G1-1G3, and 1F1-1F2, exhibited potential inhibitory effects on α-glucosidase with IC50 values ranging from 11.45 ± 0.87 to 193.80 ± 6.52 µg/mL. Among them, 1G1 with an IC50 value of 11.45 ± 0.87 µg/mL was the most potential α-glucosidase inhibitor, which is about 30 times stronger than the positive control acarbose with an IC50 value of 346.63 ± 15.65 µg/mL.


Asunto(s)
Dimetilaliltranstransferasa , Floretina , Floretina/farmacología , Indoles/química , Carbono , Catálisis , Prenilación
10.
Viruses ; 16(4)2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675938

RESUMEN

Macrofungi play important roles in the soil elemental cycle of terrestrial ecosystems. Fungal viruses are common in filamentous fungi, and some of them can affect the growth and development of hosts. However, the composition and evolution of macrofungal viruses are understudied. In this study, ninety strains of Trametes versicolor, Coprinellus micaceus, Amanita strobiliformis, and Trametes hirsuta were collected in China. Four mixed pools were generated by combining equal quantities of total RNA from each strain, according to the fungal species, and then subjected to RNA sequencing. The sequences were assembled, annotated, and then used for phylogenetic analysis. Twenty novel viruses or viral fragments were characterized from the four species of macrofungi. Based on the phylogenetic analysis, most of the viral contigs were classified into ten viral families or orders: Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mitoviridae, Mymonaviridae, and Bunyavirales. Of these, ambi-like viruses with circular genomes were widely distributed among the studied species. Furthermore, the number and overall abundance of viruses in these four species of macrofungi (Basidiomycota) were found to be much lower than those in broad-host phytopathogenic fungi (Ascomycota: Sclerotinia sclerotiorum, and Botrytis cinerea). By employing metatranscriptomic analysis in this study, for the first time, we demonstrated the presence of multiple mycoviruses in Amanita strobiliformis, Coprinellus micaceus, Trametes hirsute, and Trametes versicolor, significantly contributing to research on mycoviruses in macrofungi.


Asunto(s)
Virus Fúngicos , Filogenia , Viroma , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Genoma Viral , China , Trametes/genética , Trametes/clasificación , Trametes/virología
11.
mSystems ; 9(5): e0130523, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38682902

RESUMEN

Microbial communities in nature are dynamically evolving as member species change their interactions subject to environmental variations. Accounting for such context-dependent dynamic variations in interspecies interactions is critical for predictive ecological modeling. In the absence of generalizable theoretical foundations, we lack a fundamental understanding of how microbial interactions are driven by environmental factors, significantly limiting our capability to predict and engineer community dynamics and function. To address this issue, we propose a novel theoretical framework that allows us to represent interspecies interactions as an explicit function of environmental variables (such as substrate concentrations) by combining growth kinetics and a generalized Lotka-Volterra model. A synergistic integration of these two complementary models leads to the prediction of alterations in interspecies interactions as the outcome of dynamic balances between positive and negative influences of microbial species in mixed relationships. The effectiveness of our method was experimentally demonstrated using a synthetic consortium of two Escherichia coli mutants that are metabolically dependent (due to an inability to synthesize essential amino acids) but competitively grow on a shared substrate. The analysis of the E. coli binary consortium using our model not only showed how interactions between the two amino acid auxotrophic mutants are controlled by the dynamic shifts in limiting substrates but also enabled quantifying previously uncharacterizable complex aspects of microbial interactions, such as asymmetry in interactions. Our approach can be extended to other ecological systems to model their environment-dependent interspecies interactions from growth kinetics.IMPORTANCEModeling environment-controlled interspecies interactions through separate identification of positive and negative influences of microbes in mixed relationships is a new capability that can significantly improve our ability to understand, predict, and engineer the complex dynamics of microbial communities. Moreover, the prediction of microbial interactions as a function of environmental variables can serve as valuable benchmark data to validate modeling and network inference tools in microbial ecology, the development of which has often been impeded due to the lack of ground truth information on interactions. While demonstrated against microbial data, the theory developed in this work is readily applicable to general community ecology to predict interactions among macroorganisms, such as plants and animals, as well as microorganisms.


Asunto(s)
Escherichia coli , Interacciones Microbianas , Interacciones Microbianas/fisiología , Cinética , Escherichia coli/metabolismo , Modelos Biológicos , Ambiente
12.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38543149

RESUMEN

General anesthetics were first used over 170 years ago; however, the mechanisms of how general anesthetics induce loss of consciousness (LOC) remain unclear. Ciprofol, a novel intravenous anesthetic, has been developed by incorporating cyclopropyl into the chemical structure of propofol. This modification offers the benefits of rapid onset and minimal injection pain. Recent studies have revealed that the glutamatergic neurons of the lateral habenula (LHb) play a crucial role in modulating the LOC induced by propofol and sevoflurane. Nevertheless, the specific involvement of LHb in the anesthetic effects of ciprofol remains uncertain. Here, using targeted recombination in active populations (TRAP) combined with electroencephalogram/electromyography recordings and the righting reflex behavioral test, our study revealed that intravenous infusion of ciprofol for 1 h could lead to the induction of c-Fos expression in the LHb in mice. The combination of TRAP and gene ablation, aimed at selectively ablating ciprofol-activated neurons in the LHb, has been shown to facilitate the emergence of ciprofol anesthesia and decrease the proportion of delta waves during the emergence phase. Chemogenetic inhibition of these neurons produced a comparable effect, whereas chemogenetic activation resulted in the opposite outcome. Chemogenetic activation of ciprofol-activated neurons in the LHb delays the emergence of anesthesia and induces a deep hypnotic state during the emergence phase. Taken together, our findings suggest that LHb ciprofol-activated neurons modulate the state of consciousness and could potentially be targeted to manipulate consciousness during ciprofol anesthesia.

13.
Adv Food Nutr Res ; 108: 289-341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461002

RESUMEN

Salmonella is a significant pathogen of human and animal health and poultry are one of the most common sources linked with foodborne illness worldwide. Global production of poultry meat and products has increased significantly over the last decade or more as a result of consumer demand and the changing demographics of the world's population, where poultry meat forms a greater part of the diet. In addition, the relatively fast growth rate of birds which is significantly higher than other meat species also plays a role in how poultry production has intensified. In an effort to meet the greater demand for poultry meat and products, modern poultry production and processing practices have changed and practices to target control and reduction of foodborne pathogens such as Salmonella have been implemented. These strategies are implemented along the continuum from parent and grandparent flocks to breeders, the farm and finished broilers to transport and processing and finally from retail to the consumer. This review focuses on common practices, interventions and strategies that have potential impact for the control of Salmonella along the poultry production continuum from farm to plate.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Aves de Corral , Animales , Humanos , Pollos , Carne , Salmonella , Microbiología de Alimentos
14.
Chem Sci ; 15(9): 3174-3181, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425507

RESUMEN

Zirconium-based metal-organic frameworks (Zr-MOFs) have been extensively studied due to their very rich structural chemistry. The combination of nearly unlimited carboxylic acid-based linkers and Zr6 clusters with multiple connectivities has led to diverse structures and specific properties of resultant Zr-MOFs. Herein, we demonstrate the successful use of reticular chemistry to construct two novel Zr-MOFs, HIAM-4040 and HIAM-4040-OH, with zfu topology. Based on a thorough structural analysis of (4,4)-connected lvt-type Zr-tetracarboxylate frameworks and a judicious linker design, we have obtained the first example of a Zr-pentacarboxylate framework featuring unprecedented 5-connected organic linkers and 5-connected Zr6 clusters. Compared with HIAM-4040, a larger Stokes shift is achieved in HIAM-4040-OH via hydroxyl group induced excited-state intramolecular proton transfer (ESIPT). HIAM-4040-OH exhibits high chemical and thermal stability and is used for HClO detection in aqueous solution with excellent sensitivity and selectivity.

15.
J Am Chem Soc ; 146(13): 9455-9464, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38512342

RESUMEN

Owing to the high H2O activity, the aqueous electrolyte in the Zn battery exhibits a narrow electrochemical window and inevitable hydrogen evolution reaction, limiting the anode utilization ratio and performance at high voltage. Carbonate ester, the well-developed electrolyte solvent in Li-ion batteries, exhibits aprotic properties and high anodic stability. However, its use in Zn metal batteries is limited due to the low solubility of Zn salts in carbonate esters. Herein, we propose a carbonate ester-based electrolyte (EC:DMC:EMC = 1:1:1 wt %), which contains a new Zn salt (Zn(BHFip)2) characterized by low cost, easy synthesis, and excellent aprotic solvent solubility. The BHFip- anion assists in forming Zn2+ conductive SEI on the anode and decomposes at high voltage to generate a protective CEI layer on the cathode. The Zn//Zn symmetric cell using such electrolyte achieves a remarkable Zn utilization ratio of 91% for 125 h, which has rarely been reported before. Furthermore, the Zn//LiMn2O4 full cell with an average operation voltage of 1.7 V demonstrates reliable cycling for 135 cycles with an N/P ratio of 1:1. In addition, the Zn//LiNi0.5Mn1.5O4 full cell exhibits a high discharge median voltage exceeding 2.2 V for 280 cycles, with the high voltage plateau (above 2 V) constituting 82% of the total capacity.

16.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 164-170, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372099

RESUMEN

The relationship between gut microbiota dysbiosis and heart failure has been drawing increasing attention. This study aimed to investigate the effects of oligo-xylulose (XOS) on the gut microbiota of mice with heart failure induced by pressure overload. A chronic heart failure mouse model was constructed by pressure overload, and XOS were administered in their diet. The gut microbiota was analyzed using 16S rRNA gene sequencing, and the effects of XOS on the microbiota composition were evaluated. . XOS supplementation improved the balance of intestinal microbiota in mice under pressure overload, increasing the abundance of beneficial bacteria, such as Bifidobacterium and Lactobacillus, while decreasing the abundance of harmful bacteria, such as Desulfovibrio and Enterococcus. XOS has potential as a dietary supplement to improve the balance of intestinal microbiota and benefit individuals with heart failure. The findings of this study suggest that modulating the gut microbiota could be a novel strategy for treating heart failure.


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Cardíaca , Animales , Ratones , ARN Ribosómico 16S/genética , Xilulosa/farmacología , Genes de ARNr , Insuficiencia Cardíaca/genética
17.
Virology ; 593: 110015, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38359578

RESUMEN

While the vast number of DNA and RNA viruses participate in biogeochemical cycles in natural systems, little is known about virome in river ecosystems. Here, we analyzed the DNA viral composition and its metabolic potential in the Yangtze River, including freshwater (FW) and freshwater sediments (FWS). A total of 1237 river-derived virus contigs (RVCs) were obtained following de novo assembly from 62 metagenomics. We found that the viral diversity is significantly positively correlated longitudinally. Moreover, FW exhibited a greater viral variety and significantly different composition than FWS. The viral co-occurrence network suggested that positive correlations predominate between RVCs. Lastly, 1657 viral functions were predicted by gene ontology. Notably, 96 of 150 RVCs with higher weights identified by random-forest classier were more abundant in FW, which most engage organic cyclic compound metabolic processes and hydrolase activity. Together, this study highlights the previously unrecognized viruses and the importance of their distributions and functions in major river systems.


Asunto(s)
Ecosistema , Virus , Ríos , Virus ADN/genética , Virus/genética , ADN
18.
IEEE J Biomed Health Inform ; 28(4): 2211-2222, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38289848

RESUMEN

Three-dimensional (3D) ultrasound imaging technique has been applied for scoliosis assessment, but the current assessment method only uses coronal projection images and cannot illustrate the 3D deformity and vertebra rotation. The vertebra detection is essential to reveal 3D spine information, but the detection task is challenging due to complex data and limited annotations. We propose VertMatch to detect vertebral structures in 3D ultrasound volume containing a detector and classifier. The detector network finds the potential positions of structures on transverse slice globally, and then the local patches are cropped based on detected positions. The classifier is used to distinguish whether the patches contain real vertebral structures and screen the predicted positions from the detector. VertMatch utilizes unlabeled data in a semi-supervised manner, and we develop two novel techniques for semi-supervised learning: 1) anatomical prior is used to acquire high-quality pseudo labels; 2) inter-slice consistency is used to utilize more unlabeled data by inputting multiple adjacent slices. Experimental results demonstrate that VertMatch can detect vertebra accurately in ultrasound volume and outperforms state-of-the-art methods. Moreover, VertMatch is also validated in automatic spinous process angle measurement on forty subjects with scoliosis, and the results illustrate that it can be a promising approach for the 3D assessment of scoliosis.


Asunto(s)
Escoliosis , Humanos , Escoliosis/diagnóstico por imagen , Imagenología Tridimensional/métodos , Columna Vertebral/diagnóstico por imagen , Ultrasonografía
19.
Biotechnol Bioeng ; 121(5): 1543-1553, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38293815

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-based screening has emerged as a powerful tool for identifying new gene targets for desired cellular phenotypes. The construction of guide RNA (gRNA) pools largely determines library quality and is usually performed using Golden Gate assembly or Gibson assembly. To date, library construction methods have not been systematically compared, and the quality check of each batch has been slow. In this study, an in-house nanopore sequencing workflow was established for assessing the current methods of gRNA pool construction. The bias of pool construction was reduced by employing the polymerase-mediated non-amplifying method. Then, a small gRNA pool was utilized to characterize stronger activation domains, specifically MED2 (a subunit of mediator complex) and HAP4 (a heme activator protein), as well as to identify better gRNA choices for dCas12a-based gene activation in Saccharomyces cerevisiae. Furthermore, based on the better CRISPRa tool identified in this study, a custom gRNA pool, which consisted of 99 gRNAs targeting central metabolic pathways, was designed and employed to screen for gene targets that could improve ethanol utilization in S. cerevisiae. The nanopore sequencing-based workflow demonstrated here should provide a cost-effective approach for assessing the quality of customized gRNA library, leading to faster and more efficient genetic and metabolic engineering in S. cerevisiae.


Asunto(s)
Secuenciación de Nanoporos , ARN Guía de Sistemas CRISPR-Cas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional , Clonación Molecular , Sistemas CRISPR-Cas/genética , Edición Génica/métodos
20.
Small Methods ; 8(2): e2300210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37231562

RESUMEN

Ionic liquids (ILs) are extensively utilized for the manipulation of crystallization kinetics of perovskite, morphology optimization, and defect passivation for the fabrication of highly efficient and stable devices. However, comparing ILs with different chemical structures and selecting the appropriate ILs from the many types available to enhance perovskite device performance remains a challenge. In this study, a range of ILs containing different sizes of anions are introduced as additives for assisting in film formation in perovskite photovoltaics. Specifically, ILs with various sizes significantly affects the strength of chemical interaction between ILs and perovskite composition, inducing varying degrees of conversion of lead iodide to perovskite as well as the formation of perovskite films with markedly disparate grain sizes and morphology. Theoretical calculations in conjunction with experimental measurements revealed that small-sized anion can more effectively reduce defect density by filling halide vacancies within perovskite bulk materials, resulting in suppression of charge-carrier recombination, an extended photoluminescence lifetime, and significantly improved device performance. Boosted by ILs with appropriate size, the champion power conversion efficiency of 24.09% for the ILs-treated device is obtained, and the unencapsulated devices retain 89.3% of its original efficiency under ambient conditions for 2000 h.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA