Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(21): e202402297, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38488772

RESUMEN

The artificial photosynthesis of H2O2 from water and oxygen using semiconductor photocatalysts is attracting increasing levels of attention owing to its green, environmentally friendly, and energy-saving characteristics. Although covalent organic frameworks (COFs) are promising materials for promoting photocatalytic H2O2 production owing to their structural and functional diversity, they typically suffer from low charge-generation and -transfer efficiencies as well as rapid charge recombination, which restricts their use as catalysts for photocatalytic H2O2 production. Herein, we report a strategy for anchoring vinyl moieties to a COF skeleton to facilitate charge separation and migration, thereby promoting photocatalytic H2O2 generation. This vinyl-group-bearing COF photocatalyst exhibits a H2O2-production rate of 84.5 µmol h-1 (per 10 mg), which is ten-times higher than that of the analog devoid of vinyl functionality and superior to most reported COF photocatalysts. Both experimental and theoretical studies provide deep insight into the origin of the improved photocatalytic performance. These findings are expected to facilitate the rational design and modification of organic semiconductors for use in photocatalytic applications.

2.
Angew Chem Int Ed Engl ; 63(20): e202402911, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38511343

RESUMEN

Memristors are essential components of neuromorphic systems that mimic the synaptic plasticity observed in biological neurons. In this study, a novel approach employing one-dimensional covalent organic framework (1D COF) films was explored to enhance the performance of memristors. The unique structural and electronic properties of two 1D COF films (COF-4,4'-methylenedianiline (MDA) and COF-4,4'-oxydianiline (ODA)) offer advantages for multilevel resistive switching, which is a key feature in neuromorphic computing applications. By further introducing a TiO2 layer on the COF-ODA film, a built-in electric field between the COF-TiO2 interfaces could be generated, demonstrating the feasibility of utilizing COFs as a platform for constructing memristors with tunable resistive states. The 1D nanochannels of these COF structures contributed to the efficient modulation of electrical conductance, enabling precise control over synaptic weights in neuromorphic circuits. This study also investigated the potential of these COF-based memristors to achieve energy-efficient and high-density memory devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA