RESUMEN
Background: To identify the cognitive load of different turning tasks in simulated flight, a flight experiment was designed based on real "preliminary screening" training modules for pilots. Methods: Heart Rate Variability (HRV) and flight data were collected during the experiments using a flight simulator and a heart rate sensor bracelet. The turning behaviors in flight were classified into climbing turns, descending turns, and level flight turns. A recognition model for the cognitive load associated with these turning behaviors was developed using machine learning and deep learning algorithms. Results: pnni_20, range_nni, rmssd, sdsd, nni_20, sd1, triangular_index indicators are negatively correlated with different turning load. The LSTM-Attention model excelled in recognizing turning tasks with varying cognitive load, achieving an F1 score of 0.9491. Conclusion: Specific HRV characteristics can be used to analyze cognitive load in different turn-ing tasks, and the LSTM-Attention model can provide references for future studies on the selection characteristics of pilot cognitive load, and offer guidance for pilot training, thus having significant implications for pilot training and flight safety.
RESUMEN
BACKGROUND: Optical detection is frequently performed on microfluidic chips for colorimetric analysis. Integrating liquid waveguide capillaries with total internal reflection with the microfluidic chip requires less procedures, which is suitable in the optical detection of microfluidic systems and is a practical alternative to increase the optical path length in the colorimetric assay of microfluidic devices for higher sensitivities and lower detection limit. However, this alternative has not been applied to the connection of PMMA chips or the microfluidic devices for the detection of phosphate in seawater. RESLUTS: Here, a lab-on-a-chip system integrating a microfluidic chip and an external liquid waveguide capillary cell was presented to detect the phosphate in seawater. The detachable total internal reflection capillary made of Teflon AF 2400 connected to the chip transports sample and transmits light, greatly reducing detection limit, eliminating the interference from stray light and widening the dynamic range of the system without specific surface treatment of the microchannel. By utilizing an internal 5-cm absorption cell and an external 20-cm liquid waveguide capillary cell, the system reaches detection limits of 59 nM and 8 nM, respectively, and can detect phosphate concentration from 0 to 23 µM. An online analyzer was developed based on the high-sensitivity system and was applied to shipboard underway analysis for two scientific cruises and to laboratory measurements for seawater samples from Xisha sea area. SIGNIFICANCE: Correlation analyses between the shipboard and laboratory phosphate measurements and other physical and biochemical elements revealed the marine ecological characteristics of the corresponding areas, demonstrating the high-sensitivity of this method over slight variations and narrow ranges of phosphate and the ability to provide microfluidic systems for high spatiotemporal resolution phosphate determination a practical and cost-effective alternative.
RESUMEN
INTRODUCTION: Prompt resolution of arteriovenous fistula (AVF) thrombosis is essential to minimize the need for temporary dialysis catheters. Identifying the ideal timing for the management of thrombosed arteriovenous fistula (AVF) is an area that has not been thoroughly explored. Herein, we examined a local infusion of urokinase for thrombolysis followed by ultrasound-guided percutaneous transluminal balloon angioplasty (PTA) in acute and subacute AVF thromboses. METHODS: This retrospective cohort research assessed thrombosed AVF in patients referred to the Second Xiangya Hospital. We included patients who underwent local thrombolysis followed by ultrasound-guided PTA treatment between January 1, 2018, and January 1, 2020. Results. We enrolled the records of 86 patients into the present study, including 44 patients with acute AVF thrombosis (group 1: thrombus age, < 72 hours) and 42 patients with subacute AVF thrombosis (group2: thrombus age, 72 hours to seven days). The thrombolytic success rate was 79.5% in group 1 and 42.9% in group 2 (P < .001). All patients underwent ultrasound-guided PTA to dissolve any residual thrombi regardless of thrombolytic success. Technical success after PTA procedures was achieved in 93.2% of patients in group 1 and 88.1% in group 2 (P = .417). Primary patency at six months was comparable between the two groups (67.5% vs. 64.8%, P = .564). We observed that thrombolytic effect does not affect PTA success rate, and six-month patency rate. CONCLUSION: Direct local infusion of urokinase to the affected area followed by ultrasound-guided PTA constitutes a minimally invasive and effective method for salvaging thrombosed AVF in contrast to abandoning the occluded fistula.
Asunto(s)
Angioplastia de Balón , Derivación Arteriovenosa Quirúrgica , Estudios de Factibilidad , Terapia Trombolítica , Trombosis , Ultrasonografía Intervencional , Activador de Plasminógeno de Tipo Uroquinasa , Humanos , Femenino , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Angioplastia de Balón/métodos , Derivación Arteriovenosa Quirúrgica/efectos adversos , Terapia Trombolítica/métodos , Activador de Plasminógeno de Tipo Uroquinasa/administración & dosificación , Activador de Plasminógeno de Tipo Uroquinasa/uso terapéutico , Anciano , Trombosis/diagnóstico por imagen , Trombosis/terapia , Fibrinolíticos/administración & dosificación , Adulto , Diálisis Renal , Resultado del Tratamiento , Oclusión de Injerto Vascular/terapia , Oclusión de Injerto Vascular/diagnóstico por imagen , Grado de Desobstrucción VascularRESUMEN
Ebselen is a drug in clinical trials for several diseases and degenerative conditions where oxidative stress is implicated. A series of novel ebselen analogues was synthesized, including hydroxy-, alkoxy- and aminomethylene derivatives, as well as hybrid species where the ebselen selenium atom is shared with other potent antioxidant structures, such as cyclic selenenyl sulfide, cyclic seleninate ester and spirodioxyselenurane moieties. Conjugates of ebselen with cholesterol, prednisolone and the radical inhibitor BHT were also prepared. The products were tested for antioxidant activity in an NMR-based assay by measuring the rate of consumption of benzyl thiol or the production of dibenzyl disulfide in the presence of hydrogen peroxide when catalyzed by the ebselen analogues. Activities ranged from 12 to 0.12 times that of ebselen. The oxidation of the 2-hydroxymethylene derivative of ebselen was faster than thiolysis in the initial step and the overall rate was further accelerated under basic conditions. The corresponding selenenyl sulfide analogue underwent very slow disproportionation under neutral conditions that was enhanced by the presence of a base catalyst. During investigation of possible fluxional behaviour of a bis-amide analogue, an unusual tetraphenyphosphonium salt of a tricoordinate selenium pincer anion was discovered with exceptionally potent catalytic activity, 130 times that of ebselen. In addition to rate measurements, X-ray crystallography and DFT computational methods were also employed to gain further structural and mechanistic insights.
RESUMEN
A sniff in humans typically lasts one to three seconds and is commonly considered to produce a long-exposure shot of the chemical environment that sets the temporal limit of olfactory perception. To break this limit, we devised a sniff-triggered apparatus that controls odorant deliveries within a sniff with a precision of 18 milliseconds. Using this apparatus, we show through rigorous psychophysical testing of 229 participants (649 sessions) that two odorants presented in one order and its reverse become perceptually discriminable when the stimulus onset asynchrony is merely 60 milliseconds (Cohen's d = 0.48; 95% confidence interval, (55, 59); 120-millisecond difference). Discrimination performance improves with the length of stimulus onset asynchrony and is independent of explicit knowledge of the temporal order of odorants or the relative amount of odorant molecules accumulated in a sniff. Our findings demonstrate that human olfactory perception is sensitive to chemical dynamics within a single sniff and provide behavioural evidence for a temporal code of odour identity.
RESUMEN
Quantum walks provide a speed-up in computational power for various quantum algorithms and serve as inspiration for the construction of complex graph representations. Many pioneering works have been dedicated to expanding the experimental state space and the complexity of graphs. However, these experiments are mostly limited to small experimental scale, which do not reach a many-body level and fail to reflect the multi-particle quantum interference effects among non-adjacent modes. Here, we present a quantum walk with three photons on a two-dimensional triangular lattice, which is mapped to a 19 × 19 × 19 high-dimensional state space and constructs a complex graph with 6859 nodes and 45,486 edges. By utilizing the statistical signatures of the output combinations and incorporating machine learning techniques, we successfully validate the nonclassical properties of the experiment. Our implementation provides a paradigm for exponentially expanding the state space and graph complexity of quantum walks, paving the way for surmounting the classical regime in large-scale quantum simulations.
RESUMEN
We described a chiral phosphoric acid (CPA) catalyzed asymmetric [3 + 3] cycloaddition of cinnamaldehyde-derived N-aryl nitrones with 2-indolylmethanols to prepare various indole-fused 1,2-oxazines in high yields (up to 96%) with excellent enantioselectivity (>99% ee). Control experiments indicate that hydrogen bonding plays important roles in controlling the enantioselectivity of products. This strategy provides an efficient pathway to construct enantioenriched indole-fused 1,2-oxazines from N-aryl nitrones with 2-indolylmethanols.
RESUMEN
BACKGROUND: The use of correctly-sized blood pressure (BP) cuffs is important to ensure accurate measurement and effective management of hypertension. The goals of this study were to determine the proportions of pregnant women that would require small, adult, large, and extra-large (XL) cuff sizes, and to examine the demographic characteristics associated with need for a large or XL cuff. METHODS: This cross-sectional study analyzed 1,176 pregnant women (≥18 years) included in the National Health and Nutrition Examination Survey (NHANES) 1999-2006 cycles. Recommended BP cuff sizes, based on American Heart Association recommendations, were categorized by mid-arm circumference: small adult (≤26 cm), adult (>26 to ≤34 cm), large (>34 to ≤44 cm), and extra-large (XL) (>44 cm). RESULTS: Among US pregnant women, recommended cuff sizes were: 17.9% small adult, 57.0% adult, and 25.1% for large or XL. About 38.5% of non-Hispanic Black, 21.6% of Mexican American and 21.0% of non-Hispanic White pregnant women required a large or XL cuff. About 81.8% of women in the highest quartile for BMI required large or XL cuffs, which was significantly higher than women in other quartiles. CONCLUSION: Roughly one out of every four pregnant women required large or XL BP cuffs. The requirement for large or XL cuffs was highest among non-Hispanic Black women and women with the highest BMI. For pregnant women, measuring the arm circumference and selecting an appropriately-sized cuff is important to facilitate accurate blood pressure monitoring and hypertension management.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: The attenuation of the Warburg effect is an important pathological feature of cognitive dysfunction, and enhancing the Warburg effect is conducive to improving cognitive function. However, the pathogenic mechanisms underlying cognitive dysfunction remain incompletely elucidated. ZiBuPiYin Recipe (ZBPYR) is a traditional Chinese herbal compound used clinically for the treatment of cognitive dysfunction with significant efficacy. Nonetheless, the molecular mechanism underlying its beneficial effects remains elusive. AIM OF THE STUDY: The objective of this study is to investigate whether the attenuation of the Warburg effect exists in a mouse model of cognitive dysfunction induced by knockout of the pyruvate dehydrogenase E1 component subunit alpha (PDHA1) gene in the hippocampus, as well as the interventional effect of ZBPYR. MATERIALS AND METHODS: Using mice with PDHA1 gene knockout in the hippocampus and their littermate control mice as study subjects, behavioral experiments were conducted to assess the impact of PDHA1 gene knockout on cognitive function and the interventional effect of ZBPYR. We detected the expression of the Warburg effect-associated rate-limiting enzymes and PI3K/AKT pathway-related proteins. Subsequently, in PC12 cells, we explored the effect of the Warburg effect on cell apoptosis as well as the role of PDHA1 in the regulation of the PI3K/AKT-Warburg effect and the potential mechanism of ZBPYR in improving cognitive function. RESULTS: Mice with knockout of the PDHA1 gene in the hippocampus exhibited cognitive dysfunction, inhibition of the PI3K/AKT pathway, reduction of the Warburg effect, and neuronal damage. In vitro experiments indicated that silencing of PDHA1 in the hippocampus inhibited the PI3K/AKT-Warburg effect, leading to cell apoptosis and mediated the effect of ZBPYR in improving cognitive function. CONCLUSION: Our data not only suggest that the hippocampal PDHA1-PI3K/AKT-Warburg effect may be involved in the pathogenesis of cognitive dysfunction, but also demonstrate that PDHA1 knockout can abolish the beneficial effects of ZBPYR on cognition. This research aids in unraveling the cause of cognitive dysfunction and, therefore, offers a promising and innovative therapeutic target for these patients.
RESUMEN
Photodynamic immunotherapy which combines photodynamic therapy with immunotherapy has become an important and effective method for the treatment of cancer. However, most cancer photodynamic immunotherapeutic systems are not able to achieve precise release of immunomodulators, resulting in systemic side effects and poor patient outcomes. Herein, a dual-activatable nano-immunomodulator (DIR NP), which both its photodynamic effect and agonist release can be activated under specific stimuli, is reported for precision cancer photodynamic immunotherapy. The DIR NP is self-assembled from an R848-conjugated amphiphilic polymer (mPEG-TK-R848) and a hydrophobic oxidized bovine serum albumin (BSA-SOH)-conjugatable photosensitizer (DIR). DIR NPs may generate a small amount of 1O2 under 808 nm laser irradiation, leading to the cleavage of thioketal (TK) moiety and release of R848 and DIR. The released DIR may conjugate with tumor-overexpressed BSA-SOH, improving its photodynamic efficiency and NIR-II fluorescence signal. Such photodynamic efficiency improvement may further enhance the release of cargoes upon irradiation. The activated photodynamic effect induces immunogenic cell death (ICD) to release immune factors and R848 can enhance the maturation of dendritic cells for inhibiting the growth of both primary and distant tumors and eliminating lung metastasis. Therefore, this study provides a dual-activatable intelligent nano-immunomodulator for precise regulation of tumor photodynamic immunotherapy.
RESUMEN
Chlorophyll a (Chl-a) is a key indicator of marine ecosystems, and certain hydro-meteorological parameters (HMPs) are highly correlated with its fluctuations. Here, relevant and accessible HMPs were used as inputs, combined with machine learning (ML) algorithms for estimating 3D Chl-a in the South China Sea (SCS). With the inputs of temperature, salinity, depth, wind speed, wind direction, sea surface pressure, and relative humidity, the LightGBM-based model performed well, achieving high R2 values of 0.985 and 0.789 in validation and testing sets, respectively. Based on a large number of in situ measurements, this model enables the estimation of the 3D distribution of summer Chl-a in the SCS over the past fifteen years using a 3D hydrographic dataset combined with surface meteorological parameters. The results show that the 3D distribution of the model estimated Chl-a is characterized similarly to the previous studies and can capture the effect of hydro-meteorological conditions on Chl-a distribution. The environmental variables affecting Chl-a were considered more comprehensively in this study, and the methodological framework has the potential to be applied to the low-cost monitoring of the remaining water quality parameters.
RESUMEN
Capsaicin activates primary afferent transient receptor potential vanilloid 1 (TRPV1) in the spinal dorsal horn and induces exaggerated glutamate release. This capsaicin action is followed by a lasting refractory state referred to as "capsaicin desensitization", which is considered a presynaptic event. In this study, using whole-cell recordings and holographic photostimulation, we reassessed this notion by investigating presynaptic glutamate release and the postsynaptic glutamate response during capsaicin administration. We found that both presynaptic synchronous glutamate release and the postsynaptic glutamate response were largely attenuated in this refractory state; in contrast, asynchronous release was exaggerated. Further behavioral studies revealed a quick increase in the mechanical pain threshold with intrathecal capsaicin administration. Taken together, both presynaptic synchronous glutamate release and the postsynaptic response are downregulated during capsaicin desensitization, and this desensitization may transiently increase the pain threshold. Since both presynaptic synchronous release and postsynaptic glutamate responses are attenuated, the traditional electrophysiological evidence supporting capsaicin desensitization as a presynaptic event should be reassessed.
RESUMEN
A series of versatile 4-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)pyridine intermediates have been developed to efficiently produce biaryls, amines, ethers, and thioethers. These hydrolysis-stable ether intermediates exhibit reactivity toward electron-donating groups and nucleophiles in cross-coupling and nucleophilic substitution reactions while surpassing the stability of corresponding aryl halides. In comparison to conventional coupling methods, this protocol offers an alternative pathway for accessing natural product and drug-like compounds without the need for metal catalysts. With assistance of this approach, we successfully obtained a potent P-glycoprotein inhibitor 4k (YS-370), a potent epidermal growth factor receptor inhibitor 4l (YS-363), and a promising lysine-specific demethylase 1 inhibitor 5g.
RESUMEN
The emergence of multidrug resistance (MDR) in malignant tumors is one of the major threats encountered currently by many chemotherapeutic agents. Among the various mechanisms involved in drug resistance, P-glycoprotein (P-gp, ABCB1), a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells, and the metabolic enzyme CYP1B1 are widely considered to be two critical targets for overcoming MDR. Unfortunately, no MDR modulator has been approved by the FDA to date. In this study, based on pharmacophore hybridization, bioisosteric and fragment-growing strategies, we designed and synthesized 11 novel tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates as dual ABCB1/CYP1B1 inhibitors. Among them, the preferred compound A10 exhibited the best MDR reversal activity (IC50 = 0.25 µM, RF = 44.4) in SW620/AD300 cells, being comparable to one of the most potent third-generation P-gp inhibitors WK-X-34. In parallel, this dual ABCB1/CYP1B1 inhibitory effect drives compound A10 exhibiting prominent drug resistance reversal activity to doxorubicin (IC50 = 4.7 µM, RF = 13.7) in ABCB1/CYP1B1-overexpressing DOX-SW620/AD300-1B1 resistant cells, which is more potent than that of the CYP1B1 inhibitor ANF. Furthermore, although compound A2 possessed moderate ABCB1/CYP1B1 inhibitory activity, it showed considerable antiproliferative activity towards drug-resistant SW620/AD300 and MKN45-DDP-R cells, which may be partly related to the increase of PUMA expression to promote the apoptosis of the drug-resistant MKN45-DDP-R cells as confirmed by proteomics and western blot assay. These results indicated that the tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates may provide a fundamental scaffold reference for further discovery of MDR reversal agents.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Antineoplásicos , Citocromo P-450 CYP1B1 , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Tetrahidroisoquinolinas , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Citocromo P-450 CYP1B1/antagonistas & inhibidores , Citocromo P-450 CYP1B1/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Tetrahidroisoquinolinas/farmacología , Tetrahidroisoquinolinas/química , Tetrahidroisoquinolinas/síntesis química , Línea Celular Tumoral , Relación Estructura-Actividad , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento MolecularRESUMEN
BACKGROUND: According to current statistics, renal cancer accounts for 3% of all cancers worldwide. Renal cell carcinoma (RCC) is the most common solid lesion in the kidney and accounts for approximately 90% of all renal malignancies. Increasing evidence has shown an association between immune infiltration in RCC and clinical outcomes. To discover possible targets for the immune system, we investigated the link between tumor-infiltrating immune cells (TIICs) and the prognosis of RCC. AIM: To investigate the effects of 22 TIICs on the prognosis of RCC patients and identify potential therapeutic targets for RCC immunotherapy. METHODS: The CIBERSORT algorithm partitioned the 22 TIICs from the Cancer Genome Atlas cohort into proportions. Cox regression analysis was employed to evaluate the impact of 22 TIICs on the probability of developing RCC. A predictive model for immunological risk was developed by analyzing the statistical relationship between the subpopulations of TIICs and survival outcomes. Furthermore, multivariate Cox regression analysis was used to investigate independent factors for the prognostic prediction of RCC. A value of P < 0.05 was regarded as statistically significant. RESULTS: Compared to normal tissues, RCC tissues exhibited a distinct infiltration of immune cells. An immune risk score model was established and univariate Cox regression analysis revealed a significant association between four immune cell types and the survival risk connected to RCC. High-risk individuals were correlated to poorer outcomes according to the Kaplan-Meier survival curve (P = 1E-05). The immunological risk score model was demonstrated to be a dependable predictor of survival risk (area under the curve = 0.747) via the receiver operating characteristic curve. According to multivariate Cox regression analysis, the immune risk score model independently predicted RCC patients' prognosis (hazard ratio = 1.550, 95%CI: 1.342-1.791; P < 0.001). Finally, we established a nomogram that accurately and comprehensively forecast the survival of patients with RCC. CONCLUSION: TIICs play various roles in RCC prognosis. The immunological risk score is an independent predictor of poor survival in kidney cancer cases.
RESUMEN
The study of in situ conformations and interactions of mitochondrial proteins plays a crucial role in understanding their biological functions. Current chemical cross-linking mass spectrometry (CX-MS) has difficulty in achieving in-depth analysis of mitochondrial proteins for cells without genetic modification. Herein, this work develops the reactive oxygen species (ROS)-responsive cross-linker delivery nanoparticles (R-CDNP) targeting mitochondria. R-CDNP contains mitochondria-targeting module triphenylphosphine, ROS-responsive module thioketal, loading module poly(lactic-co-glycolic acid) (PLGA), and polyethylene glycol (PEG), and cross-linker module disuccinimidyl suberate (DSS). After targeting mitochondria, ROS-triggered cross-linker release improves the cross-linking coverage of mitochondria in situ. In total, this work identifies 2103 cross-linked sites of 572 mitochondrial proteins in HepG2 cells. 1718 intra-links reveal dynamic conformations involving chaperones with ATP-dependent conformation cycles, and 385 inter-links reveal dynamic interactions involving OXPHOS complexes and 27 pairs of possible potential interactions. These results signify that R-CDNP can achieve dynamic conformation and interaction analysis of mitochondrial proteins in living cells, thereby contributing to a better understanding of their biological functions.
RESUMEN
BACKGROUND: Qingshen exhibits anti-inflammatory and immunoregulation effects to renal damage. Dendritic cells (DCs) play a critical role in regulating the pathologic inflammatory environment in renal fibrosis (RF). PURPOSE: To investigate the immune modulation mechanism of qingshen granule (QSG) in RF, particularly focusing on the role of DCs. METHODS/STUDY DESIGN: Adenine-induced RF animal models were used to study the pharmacological effects of QSG and the immune cells differentiation and function. Glucose uptake, non-esterified fatty acids secretion, mitochondrial membrane potential (MMP) detection, and qPCR were used to explore the effect of QSG to glucose and lipid metabolism in DCs and T cells. The effect of QSG to PI3K-AKT-mTOR axis and the modulation of mTOR to PD-L1 were explored by co-culture experiments, co-immunoprecipitation and western blot assays. The interaction of DCs/CD8+T cells and renal tubular epithelial cells (RTECs) was investigated to demonstrate the direct action and/or the immune-mediated regulation of QSG to RF. The components of QSG in the serum were determined by HPLC. And the effect of active ingredients and formula to DCs and T cells was analyzed by cell experiments in vitro. RESULTS: QSG reduced nephritic histopathological damage and suppressed the release of proinflammatory cytokines in adenine-induced RF mice. Of note, QSG decreased the levels of CD86, MHC-II, and CCR7 on DCs, while, increased PD-L1 expression on DCs in RF. The results demonstrated that QSG promoted the maturation and inhibited the migration of DCs, and QSG decreased the antigen presenting of DCs to T cells. Additionally, QSG reduced the MMP and glucose/lipid utilization ratio in DCs. QSG also down-regulated the level of targeted metabolic genes included glucose transporter 1 (Glut1), sterol-regulatory element-binding protein 1 (Srebp1), acetyl-CoA carboxylase alpha (Acaca), phosphomevalonate kinase (Pmvk), and up-regulated sirtuin2 (Sirt2) in DCs. In terms of mechanism, QSG inhibited the metabolism-related PI3K-AKT-mTOR pathway, followed by regulating the interaction of mTOR with PD-L1 to enhance the membrane stability of PD-L1. Besides, HPLC analysis identified five active ingredients in QSG. The specific anti-inflammatory and immunosuppressive actions of these ingredients were found to be weaker than QSG as a whole. Finally, inhibiting DC function by QSG disrupted the communication among DCs, T cells, and RTECs. This disruption was associated with low expression of α-smooth muscle actin (α-SMA) and collagen type I (Col-I) in the kidney. CONCLUSIONS: QSG inhibits DC metabolism and function via the PI3K-AKT-mTOR pathway to alleviate RF. The study highlights the importance of the specific composition of the formula in targeting DC-mediated immune regulation.
RESUMEN
Objective: By assessing the genetic diversity and associated selective traits of Kirghiz sheep (KIR), we aim to uncover the mechanisms that contribute to sheep's adaptability to the Pamir Plateau environment. Methods: This study utilized Illumina Ovine SNP50 BeadChip data from KIR residing in the Pamir Plateau, Qira Black sheep (QBS) inhabiting the Taklamakan Desert, and commonly introduced breeds including Dorper sheep (DOR), Suffolk sheep (SUF), and Hu sheep (HU). The data was analyzed using principal component analysis, phylogenetic analysis, population admixture analysis, kinship matrix analysis, linkage disequilibrium analysis, and selective signature analysis. We employed four methods for selective signature analysis: fixation index (Fst), cross-population extended homozygosity (XP-EHH), integrated haplotype score (iHS), and nucleotide diversity (Pi). These methods aim to uncover the genetic mechanisms underlying the germplasm resources of Kirghiz sheep, enhance their production traits, and explore their adaptation to challenging environmental conditions. Results: The test results unveiled potential selective signals associated with adaptive traits and growth characteristics in sheep under harsh environmental conditions, and annotated the corresponding genes accordingly. These genes encompass various functionalities such as adaptations associated with plateau, cold, and arid environment (ETAA1, UBE3D, TLE4, NXPH1, MAT2B, PPARGC1A, VEGFA, TBX15 and PLXNA4), wool traits (LMO3, TRPS1, EPHA5), body size traits (PLXNA2, EFNA5), reproductive traits (PPP3CA, PDHA2, NTRK2), and immunity (GATA3). Conclusion: Our study identified candidate genes associated with the production traits and adaptation to the harsh environment of the Pamir Plateau in Kirghiz sheep. These findings provide valuable resources for local sheep breeding programs. The objective of this study is to offer valuable insights for the sustainable development of the Kirghiz sheep industry.
Asunto(s)
Polimorfismo de Nucleótido Simple , Animales , Ovinos/genética , Polimorfismo de Nucleótido Simple/genética , Desequilibrio de Ligamiento/genética , Oveja Doméstica/genética , Filogenia , Variación Genética/genéticaRESUMEN
This study aimed to investigate the effects of wild Cordyceps sinensis on chronic obstructive pulmonary disease (COPD) rats through metabolomics approach, combined with biochemical parameters evaluations. Consequently, C. sinensis exhibited regulatory effects on the lung's metabolic profiles in COPD rats. Treatment with C. sinensis potentially modulated glycerophospholipid metabolism, glutathione metabolism, and tryptophan metabolism, thereby alleviating oxidative stress (by decreasing MDA and GSSG, while increasing SOD and GSH) and inflammatory response (by inhibiting TNF-α, IL-8, and MMP-9) in COPD rats while improving lung tissue damage.