Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826271

RESUMEN

Codon usage bias, or the unequal use of synonymous codons, is observed across genes, genomes, and between species. The biased use of synonymous codons has been implicated in many cellular functions, such as translation dynamics and transcript stability, but can also be shaped by neutral forces. The Saccharomycotina, the fungal subphylum containing the yeasts Saccharomyces cerevisiae and Candida albicans , has been a model system for studying codon usage. We characterized codon usage across 1,154 strains from 1,051 species to gain insight into the biases, molecular mechanisms, evolution, and genomic features contributing to codon usage patterns across the subphylum. We found evidence of a general preference for A/T-ending codons and correlations between codon usage bias, GC content, and tRNA-ome size. Codon usage bias is also distinct between the 12 orders within the subphylum to such a degree that yeasts can be classified into orders with an accuracy greater than 90% using a machine learning algorithm trained on codon usage. We also characterized the degree to which codon usage bias is impacted by translational selection. Interestingly, the degree of translational selection was influenced by a combination of genome features and assembly metrics that included the number of coding sequences, BUSCO count, and genome length. Our analysis also revealed an extreme bias in codon usage in the Saccharomycodales associated with a lack of predicted arginine tRNAs. The order contains 24 species, and 23 are computationally predicted to lack tRNAs that decode CGN codons, leaving only the AGN codons to encode arginine. Analysis of Saccharomycodales gene expression, tRNA sequences, and codon evolution suggests that extreme avoidance of the CGN codons is associated with a decline in arginine tRNA function. Codon usage bias within the Saccharomycotina is generally consistent with previous investigations in fungi, which show a role for both genomic features and GC bias in shaping codon usage. However, we find cases of extreme codon usage preference and avoidance along yeast lineages, suggesting additional forces may be shaping the evolution of specific codons.

2.
Sci Rep ; 14(1): 12621, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824201

RESUMEN

Anaplasma and Ehrlichia are tick-borne bacterial pathogens that cause anaplasmoses and ehrlichioses in humans and animals. In this study, we examined the prevalence of Anaplasma and Ehrlichia species in ticks and domesticated animals in Suizhou County, Hubei Province in the central China. We used PCR amplification and DNA sequencing of the 16S rRNA, groEL, and gltA genes to analyze. We collected 1900 ticks, including 1981 Haemaphysalis longicornis and 9 Rhipicephalus microplus, 159 blood samples of goats (n = 152), cattle (n = 4), and dogs (n = 3) from May to August of 2023. PCR products demonstrated that Anaplasma bovis, Anaplasma capra, and an Ehrlichia species were detected in the H. longicornis with the minimum infection rates (MIR) of 1.11%, 1.32%, and 0.05%, respectively; A. bovis, A. capra, and unnamed Anaplasma sp. were detected in goats with an infection rate of 26.31%, 1.31% and 1.97%, respectively. Anaplasma and Ehrlichia species were not detected from cattle, dogs and R. microplus ticks. The genetic differences in the groEL gene sequences of the Anaplasma in the current study were large, whereas the 16S rRNA and gltA gene sequences were less disparate. This study shows that ticks and goats in Suizhou County, Hubei Province carry multiple Anaplasma species and an Ehrlichia species, with relatively higher infection rate of A. bovis in goats. Our study indicates that multiple Anaplasma and Ehrlichia species exist in ticks and goats in the central China with potential to cause human infection.


Asunto(s)
Anaplasma , Anaplasmosis , Animales Domésticos , Ehrlichia , Variación Genética , Cabras , ARN Ribosómico 16S , Animales , Anaplasma/genética , Anaplasma/aislamiento & purificación , China/epidemiología , Ehrlichia/genética , Ehrlichia/aislamiento & purificación , Cabras/microbiología , Perros , Bovinos , Anaplasmosis/epidemiología , Anaplasmosis/microbiología , Prevalencia , Animales Domésticos/microbiología , ARN Ribosómico 16S/genética , Garrapatas/microbiología , Ehrlichiosis/epidemiología , Ehrlichiosis/veterinaria , Ehrlichiosis/microbiología , Filogenia
3.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895429

RESUMEN

Gene gains and losses are a major driver of genome evolution; their precise characterization can provide insights into the origin and diversification of major lineages. Here, we examined gene family evolution of 1,154 genomes from nearly all known species in the medically and technologically important yeast subphylum Saccharomycotina. We found that yeast gene family and genome evolution are distinct from plants, animals, and filamentous ascomycetes and are characterized by small genome sizes and smaller gene numbers but larger gene family sizes. Faster-evolving lineages (FELs) in yeasts experienced significantly higher rates of gene losses-commensurate with a narrowing of metabolic niche breadth-but higher speciation rates than their slower-evolving sister lineages (SELs). Gene families most often lost are those involved in mRNA splicing, carbohydrate metabolism, and cell division and are likely associated with intron loss, metabolic breadth, and non-canonical cell cycle processes. Our results highlight the significant role of gene family contractions in the evolution of yeast metabolism, genome function, and speciation, and suggest that gene family evolutionary trajectories have differed markedly across major eukaryotic lineages.

4.
Immun Inflamm Dis ; 12(6): e1320, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888378

RESUMEN

BACKGROUND: At present, neonatal hypoxic-ischemic encephalopathy (HIE), especially moderate to severe HIE, is a challenging disease for neonatologists to treat, and new alternative/complementary treatments are urgently needed. The neuroinflammatory cascade triggered by hypoxia-ischemia (HI) insult is one of the core pathological mechanisms of HIE. Early inhibition of neuroinflammation provides long-term neuroprotection. Plant-derived monomers have impressive anti-inflammatory effects. Aloesin (ALO) has been shown to have significant anti-inflammatory and antioxidant effects in diseases such as ulcerative colitis, but its role in HIE is unclear. To this end, we conducted a series of experiments to explore the potential mechanism of ALO in preventing and treating brain damage caused by HI insult. MATERIALS AND METHODS: Hypoxic-ischemic brain damage (HIBD) was induced in 7-day-old Institute of Cancer Research (ICR) mice, which were then treated with 20 mg/kg ALO. The neuroprotective effects of ALO on HIBD and the underlying mechanism were evaluated through neurobehavioral testing, infarct size measurement, apoptosis detection, protein and messenger RNA level determination, immunofluorescence, and molecular docking. RESULTS: ALO alleviated the long-term neurobehavioral deficits caused by HI insult; reduced the extent of cerebral infarction; inhibited cell apoptosis; decreased the levels of the inflammatory factors interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α; activated microglia and astrocytes; and downregulated the protein expression of members in the TLR4 signaling pathway. In addition, molecular docking showed that ALO can bind stably to TLR4. CONCLUSION: ALO ameliorated HIBD in neonatal mice by inhibiting the neuroinflammatory response mediated by TLR4 signaling.


Asunto(s)
Animales Recién Nacidos , Hipoxia-Isquemia Encefálica , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Ratones Endogámicos ICR , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Simulación del Acoplamiento Molecular
5.
Fundam Res ; 4(3): 589-602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933191

RESUMEN

Hybridization and polyploidization have made great contributions to speciation, heterosis, and agricultural production within plants, but there is still limited understanding and utilization in animals. Subgenome structure and expression reorganization and cooperation post hybridization and polyploidization are essential for speciation and allopolyploid success. However, the mechanisms have not yet been comprehensively assessed in animals. Here, we produced a high-fidelity reference genome sequence for common carp, a typical allotetraploid fish species cultured worldwide. This genome enabled in-depth analysis of the evolution of subgenome architecture and expression responses. Most genes were expressed with subgenome biases, with a trend of transition from the expression of subgenome A during the early stages to that of subgenome B during the late stages of embryonic development. While subgenome A evolved more rapidly, subgenome B contributed to a greater level of expression during development and under stressful conditions. Stable dominant patterns for homoeologous gene pairs both during development and under thermal stress suggest a potential fixed heterosis in the allotetraploid genome. Preferentially expressing either copy of a homoeologous gene at higher levels to confer development and response to stress indicates the dominant effect of heterosis. The plasticity of subgenomes and their shifting of dominant expression during early development, and in response to stressful conditions, provide novel insights into the molecular basis of the successful speciation, evolution, and heterosis of the allotetraploid common carp.

6.
Syst Biol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940001

RESUMEN

Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches most likely find suboptimal trees, it is recommended to conduct multiple (e.g., ten) tree searches in phylogenetic analyses. However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains poorly explored. Here, we found that a random starting tree was not as effective as the BioNJ and parsimony starting trees in inferring ML gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAxML-NG, by running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among 100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the number of tree searches was ≥ 10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically from those inferred from 100 tree searches for 6 /15 phylogenomic datasets. Lastly, our simulations showed that gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more likely to yield the correct trees.

7.
BMC Geriatr ; 24(1): 431, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750411

RESUMEN

BACKGROUND: Meaning in life is a widely accepted aim in promoting psychosocial health in institutional care. However, how caregiver interaction and perceived control impact meaning in life among the elderly remains unclear. This study explores the effect of institutional caregiver interaction, family caregiver interaction, and perceived control on meaning in life among elderly residents in China, and the potential moderating effect of elderly-to-social worker ratio in these associations. METHODS: Multistage random sampling was used to recruit a sample of 452 elderly residents from 4 elderly care homes in urban China. A structural equation model was used to test the study hypothesis. RESULTS: Institutional caregiver interaction is positively related to meaning in life, and perceived control among elderly residents has a positive impact on meaning in life. Moreover, the elderly-to-social worker ratio moderated the relationship between institutional caregiver interaction and meaning in life, as well as between family caregiver interaction and meaning in life. CONCLUSIONS: Increase elderly's meaning in life is an important service target for the caring professions in institutional care. Social workers affect the effectiveness of interventions on elderly's meaning in life in institutional care. A higher elderly-to-social worker ratio could improve the effectiveness of interventions on meaning in life for elderly residents.


Asunto(s)
Cuidadores , Humanos , Masculino , Femenino , Anciano , Cuidadores/psicología , China/epidemiología , Anciano de 80 o más Años , Trabajadores Sociales/psicología , Calidad de Vida/psicología , Hogares para Ancianos , Persona de Mediana Edad , Casas de Salud
8.
Plant J ; 119(1): 348-363, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38606539

RESUMEN

The Phyllanthaceae family comprises a diverse range of plants with medicinal, edible, and ornamental value, extensively cultivated worldwide. Polyploid species commonly occur in Phyllanthaceae. Due to the rather complex genomes and evolutionary histories, their speciation process has been still lacking in research. In this study, we generated chromosome-scale haplotype-resolved genomes of two octoploid species (Phyllanthus emblica and Sauropus spatulifolius) in Phyllanthaceae family. Combined with our previously reported one tetraploid (Sauropus androgynus) and one diploid species (Phyllanthus cochinchinensis) from the same family, we explored their speciation history. The three polyploid species were all identified as allopolyploids with subgenome A/B. Each of their two distinct subgenome groups from various species was uncovered to independently share a common diploid ancestor (Ancestor-AA and Ancestor-BB). Via different evolutionary routes, comprising various scenarios of bifurcating divergence, allopolyploidization (hybrid polyploidization), and autopolyploidization, they finally evolved to the current tetraploid S. androgynus, and octoploid S. spatulifolius and P. emblica, respectively. We further discuss the variations in copy number of alleles and the potential impacts within the two octoploids. In addition, we also investigated the fluctuation of metabolites with medical values and identified the key factor in its biosynthesis process in octoploids species. Our study reconstructed the evolutionary history of these Phyllanthaceae species, highlighting the critical roles of polyploidization and hybridization in their speciation processes. The high-quality genomes of the two octoploid species provide valuable genomic resources for further research of evolution and functional genomics.


Asunto(s)
Genoma de Planta , Haplotipos , Hibridación Genética , Poliploidía , Genoma de Planta/genética , Haplotipos/genética , Filogenia , Especiación Genética , Evolución Molecular
9.
Science ; 384(6694): eadj4503, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662846

RESUMEN

Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species), grown in 24 different environmental conditions, to examine niche breadth evolution. We found that large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific metabolic pathways, but we found limited evidence for trade-offs. These comprehensive data argue that intrinsic factors shape niche breadth variation in microbes.


Asunto(s)
Ascomicetos , Carbono , Interacción Gen-Ambiente , Nitrógeno , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Carbono/metabolismo , Genoma Fúngico , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Filogenia
10.
Proc Natl Acad Sci U S A ; 121(18): e2315314121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669185

RESUMEN

How genomic differences contribute to phenotypic differences is a major question in biology. The recently characterized genomes, isolation environments, and qualitative patterns of growth on 122 sources and conditions of 1,154 strains from 1,049 fungal species (nearly all known) in the yeast subphylum Saccharomycotina provide a powerful, yet complex, dataset for addressing this question. We used a random forest algorithm trained on these genomic, metabolic, and environmental data to predict growth on several carbon sources with high accuracy. Known structural genes involved in assimilation of these sources and presence/absence patterns of growth in other sources were important features contributing to prediction accuracy. By further examining growth on galactose, we found that it can be predicted with high accuracy from either genomic (92.2%) or growth data (82.6%) but not from isolation environment data (65.6%). Prediction accuracy was even higher (93.3%) when we combined genomic and growth data. After the GALactose utilization genes, the most important feature for predicting growth on galactose was growth on galactitol, raising the hypothesis that several species in two orders, Serinales and Pichiales (containing the emerging pathogen Candida auris and the genus Ogataea, respectively), have an alternative galactose utilization pathway because they lack the GAL genes. Growth and biochemical assays confirmed that several of these species utilize galactose through an alternative oxidoreductive D-galactose pathway, rather than the canonical GAL pathway. Machine learning approaches are powerful for investigating the evolution of the yeast genotype-phenotype map, and their application will uncover novel biology, even in well-studied traits.


Asunto(s)
Galactosa , Aprendizaje Automático , Galactosa/metabolismo , Genoma Fúngico , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
11.
Plant Dis ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687570

RESUMEN

Casuarina equisetifolia is crucial in protecting coastal regions of China against typhoon attacks, but has faced a substantial challenge due to wilt disease caused by pathogens of the Ralstonia solanacearum species complex (RSSC). Although the initial outbreak of Casuarina wilt in 1970s was effectively controlled by disease-resistant C. equisetifolia varieties, the disease has recently re-emerged in coastal regions of Guangdong. In this study, we report the isolation, characterization, and comparative genomic analysis of 11 RSSC strains from diseased C. equisetifolia at various locations along the coast of Guangdong. Phylogenomic analysis showed that the strains were closely related and clustered with phylotype I strains previously isolated from peanuts. Single-gene based analysis further suggested these strains could be derived from strains present in Guangdong since the 1980s, indicating a historical context to their current pathogenicity. Casuarina-isolated strains exhibited notably higher virulence against C. equisetifolia and peanuts than representative RSSC strains GMI1000 and EP1, suggesting host-specific adaptations which possibly contributed to the recent outbreak. Comparative genomic analysis among RSSC strains revealed a largely conserved genome structure and high levels of conservation in gene clusters encoding extracellular polysaccharides biosynthesis, secretion systems, and quorum sensing regulatory systems. However, we also found a number of unique genes in the Casuarina-isolated strains that were absent in GMI1000 and EP1, and vice versa, pointing to potential genetic factors underpinning their differential virulence. These unique genes offer promising targets for future functional studies. Overall, our findings provide crucial insights into the RSSC pathogens causing Casuarina wilt in Guangdong, guiding future efforts in disease control and prevention.

12.
Int J Biol Macromol ; 264(Pt 2): 130345, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401587

RESUMEN

Cellulose is a sustainable natural polymer material that has found widespread application in transformers and other power equipment because of its excellent electrical and mechanical performance. However, the utility of cellulose materials has been limited by the challenge of balancing heat resistance with flexibility. On the basis of the preliminary research conducted by the research team, further proposals have been put forward for a method involving disk milling to create a "micro-nanocollaboration" network for the fabrication of flexible, high-temperature-resistant, and ultrafine fiber-based cellulose insulating films. The resulting full-component cellulose films exhibited impressive properties, including high tensile strength (22 MPa), flexibility (92-263 mN), remarkable electrical breakdown strength (39 KV/mm), and volume resistivity that meets the standards for insulation materials (4.92 × 1011 Ω·m). These results demonstrate that the proposed method can produce full-component cellulose insulation films that offer both exceptional flexibility and high-temperature resistance.


Asunto(s)
Celulosa , Polímeros , Temperatura , Calor , Suministros de Energía Eléctrica
13.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415839

RESUMEN

Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determine the extant distribution of yeast enterobactin producers and cheaters.


Asunto(s)
Enterobactina , Evolución Molecular , Operón , Filogenia , Enterobactina/metabolismo , Enterobactina/genética , Sideróforos/metabolismo , Sideróforos/genética , Genes Fúngicos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transferencia de Gen Horizontal
14.
Proc Natl Acad Sci U S A ; 121(10): e2316031121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412132

RESUMEN

The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,816 terrestrial occurrence records and 96 environmental variables to infer global distribution maps at ~1 km2 resolution for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversity. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high-diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many long-standing macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and a positive relationship between latitude and range size (Rapoport's rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.


Asunto(s)
Biodiversidad , Ecosistema , Clima , Bosques , Carbono , Levaduras
15.
Plants (Basel) ; 13(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276775

RESUMEN

Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and PHI-base searches. One among them, FlgI, was found to inhibit yeast growth when expressed in Saccharomyces cerevisiae. The expression of the signal peptide of FlgI fused with PhoA in Escherichia coli resulted in the discovery that FlgI was a novel Sec-dependent secretory protein. We further found that the carboxyl-terminal HA-tagged FlgI was secreted via outer membrane vesicles in Sinorhizobium meliloti. Fluoresence localization of transient expression FlgI-GFP in Nicotiana benthamiana revealed that FlgI is mainly localized in the cytoplasm, cell periphery, and nuclear periphery of tobacco cells. In addition, our experimental results suggest that FlgI has a strong ability to induce callose deposition and cell necrosis in N. benthamiana. Finally, by screening a large library of compounds in a high-throughput format, we found that cyclosporin A restored the growth of FlgI-expressing yeast. These results confirm that FlgI is a novel Sec-dependent effector, enriching our understanding of CLas pathogenicity and helping to develop new and more effective strategies to manage HLB.

16.
Nat Genet ; 56(1): 136-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38082204

RESUMEN

Most fresh bananas belong to the Cavendish and Gros Michel subgroups. Here, we report chromosome-scale genome assemblies of Cavendish (1.48 Gb) and Gros Michel (1.33 Gb), defining three subgenomes, Ban, Dh and Ze, with Musa acuminata ssp. banksii, malaccensis and zebrina as their major ancestral contributors, respectively. The insertion of repeat sequences in the Fusarium oxysporum f. sp. cubense (Foc) tropical race 4 RGA2 (resistance gene analog 2) promoter was identified in most diploid and triploid bananas. We found that the receptor-like protein (RLP) locus, including Foc race 1-resistant genes, is absent in the Gros Michel Ze subgenome. We identified two NAP (NAC-like, activated by apetala3/pistillata) transcription factor homologs specifically and highly expressed in fruit that directly bind to the promoters of many fruit ripening genes and may be key regulators of fruit ripening. Our genome data should facilitate the breeding and super-domestication of bananas.


Asunto(s)
Fusarium , Musa , Musa/genética , Fusarium/genética , Triploidía , Fitomejoramiento , Factores de Transcripción/genética , Enfermedades de las Plantas/genética
17.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045280

RESUMEN

Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determines the extant distribution of yeast enterobactin producers and cheaters.

18.
Ann Plast Surg ; 91(6): 763-770, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962184

RESUMEN

ABSTRACT: The purpose of this study was to introduce a modified suture technique and to compare its effects on skin scar formation with 2 traditional suture methods: simple interrupted suture (SIS) and vertical mattress suture (VMS). Three groups of healthy adult female Sprague-Dawley rats were selected (6 replicates in each group), and the full-thickness skin of 5 cm × 0.2 cm was cut off on the back of the rats after anesthesia. The wounds were then sutured using 1 of the 3 methods for each group: SIS, VMS, and a newly introduced modified vertical mattress suture (M-VMS) technique with the needle reinsertion at the exit point. A traction device was installed on the back of the rats to achieve high tension wounds. The tensile distance was increased by 1 mm every day for 20 days. After 20 days of healing, the hematoxylin-eosin staining method was used for observation of scar morphology. The collagen production rate was measured by Masson staining, and the type I collagen and type III collagen were detected by the immunofluorescence method. Immunohistochemical staining was used to detect the expression of myofibroblast marker α-smooth muscle actin, and real-time quantitative polymerase chain reaction and Western blot techniques were used to detect the expressions of transforming growth factors TGFß1, TGFß2, and TGFß3 to understand the mechanisms of scar formation. Results showed that the quantity and density of collagen fibers were both lower in the M-VMS group than in the other 2 groups. Immunofluorescence results showed that type I collagen was significantly lower, whereas type III collagen was significantly higher in the M-VMS group than in the other 2 groups. The expressions of α-smooth muscle actin and TGFß1 both were lower in the M-VMS group than in the other 2 groups. The expression of TGFß2 and TGFß3 had no obvious difference among the 3 groups. For wounds under high tension, compared with SIS and VMS methods, the M-VMS technique we proposed can reduce scar formation due to the reduction of collagen formation, myofibroblast expression, and TGFß1 expression.


Asunto(s)
Cicatriz , Colágeno Tipo I , Ratas , Femenino , Animales , Cicatriz/prevención & control , Colágeno Tipo III , Actinas , Ratas Sprague-Dawley , Colágeno , Técnicas de Sutura
19.
mBio ; 14(5): e0202823, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37787568

RESUMEN

IMPORTANCE: The bacterial wilt caused by the soil-borne phytopathogen Ralstonia solanacearum is one of the most destructive crop diseases. To achieve a successful infection, R. solanacearum has evolved an intricate regulatory network to orchestrate the expression of an arsenal of virulence factors and fine-tune the allocation of energy. However, despite the wealth of knowledge gained in the past decades, many players and connections are still missing from the network. The importance of our study lies in the identification of PhcX, a novel conserved global regulator with critical roles in modulating the virulence and metabolism of R. solanacearum. PhcX affects many well-characterized regulators and exhibits contrasting modes of regulation from the central regulator PhcA on a variety of virulence-associated traits and genes. Our findings add a valuable piece to the puzzle of how the pathogen regulates its proliferation and infection, which is critical for understanding its pathogenesis and developing disease control strategies.


Asunto(s)
Ralstonia solanacearum , Factores de Virulencia , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología
20.
Microb Biotechnol ; 16(11): 2145-2160, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37815509

RESUMEN

Virulence factor modulating (VFM) is a quorum sensing (QS) signal shared by and specific to Dickeya bacteria, regulating the production of plant cell wall degrading enzymes (PCWDEs) and virulence of Dickeya. High polarity and trace of VFM signal increase the difficulty of signal separation and structure identification, and thus limit the development of quorum quenching strategy to biocontrol bacterial soft rot diseases caused by Dickeya. In order to high-throughput screen VFM quenching bacteria, a vfmE-gfp biosensor VR2 (VFM Reporter) sensitive to VFM signal was first constructed. Subsequently, two bacterial strains with high quenching efficiency were screened out by fluorescence intensity measurement and identified as Pseudomonas chlororaphis L5 and Enterobacter asburiae L95 using multilocus sequence analysis (MLSA). L5 and L95 supernatants reduced the expression of vfm genes, and both strains also decreased the production of PCWDEs of D. zeae MS2 and significantly reduced the virulence of D. oryzae EC1 on rice seedlings, D. zeae MS2 on banana seedlings, D. dadantii 3937 on potato and D. fangzhongdai CL3 on taro. Findings in this study provide a method to high-throughput screen VFM quenching bacteria and characterize novel functions of P. chlororaphis and E. asburiae in biocontrolling plant diseases through quenching VFM QS signal.


Asunto(s)
Pseudomonas chlororaphis , Factores de Virulencia , Factores de Virulencia/genética , Dickeya/metabolismo , Percepción de Quorum , Pseudomonas chlororaphis/metabolismo , Enterobacteriaceae , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA