RESUMEN
BACKGROUND: Mucormycosis is a severe and fatal fungal infection in patients with coronavirus disease 2019 caused by Mucorales. Here we present a case of a 63-year-old man with coronavirus disease 2019 infection, along with rhinosinusitis mucormycosis caused by Rhizopus delemar. CASE PRESENTATION: A 63-year-old Iranian man suffering from a coronavirus disease 2019 infection with symptoms of cough, shortness of breath, and generalized body pain. On the basis of the clinical manifestations, such as headache, a history of black nasal discharge, nasal hypoesthesia, facial swelling, numbness, nasal obstruction, presence of necrotic lesions on the nasal passages on physical examination, and abnormal computed tomography scans of paranasal sinuses, the patient underwent surgical debridement. Direct microscopy of specimens obtained from the paranasal sinuses, and subsequent isolation and identification, revealed a rhinosinusitis mucormycosis caused by R. delemar. Despite therapeutic measures, such as sinus debridement surgery and antifungal therapy with amphotericin B injection (50 mg/day), the patient died after 35 days of hospitalization. CONCLUSION: In this report, we present the first documented case of human infection with R. delemar in a patient with coronavirus disease 2019 infection, who also exhibited rhinosinusitis mucormycosis. R. delemar appears to be an emerging agent of rhinosinusitis mucormycosis in this region. Furthermore, prompt diagnosis and the exploration of alternative antifungal treatments, beyond amphotericin B, may be crucial for effectively managing patients with R. delemar infections.
Asunto(s)
Antifúngicos , COVID-19 , Mucormicosis , Rinitis , Rhizopus , Sinusitis , Humanos , Masculino , COVID-19/complicaciones , COVID-19/diagnóstico , Mucormicosis/diagnóstico , Mucormicosis/terapia , Mucormicosis/complicaciones , Persona de Mediana Edad , Sinusitis/microbiología , Sinusitis/diagnóstico , Irán , Rhizopus/aislamiento & purificación , Resultado Fatal , Rinitis/microbiología , Rinitis/diagnóstico , Antifúngicos/uso terapéutico , Desbridamiento , SARS-CoV-2 , Tomografía Computarizada por Rayos X , Anfotericina B/uso terapéutico , RinosinusitisRESUMEN
The quality control of herbal medicines is key to their clinical efficacy. The multi-component and multi-effect characteristics of herbal medicines have prompted scholars to clarify various factors related to quality evaluation through various methods. Nevertheless, the relationship between chemical properties and their associated clinical efficacy is little reflected in the quality control techniques currently in use. To address the issue, a novel herbal quality standard system based on the efficacy-oriented Q-marker of the effect-constituent index (ECI) is promoted in this study, using Scutellariae Radix (SR), a widely used herbal medicine with anti-inflammation, anti-tumor, anti-viral and other therapeutic effects, as a case study. Combined with chromatographic analysis and bioassay, four Q-markers including baicalin, baicalein, wogonin and oroxylin A were selected based on the anti-inflammatory efficacy of SR. The ECI model of SR was constructed by combining the content determination of the Q-markers via ultra-high-performance liquid chromatography-triple quadrupole mass spectroscopy (UHPLC-QqQ-MS/MS) with the corresponding biological potency obtained from the anti-inflammatory effects on tumor necrosis factor (TNF)-α and interleukin (IL)-6 production. Correlation analysis showed that the ECI was significantly correlated with the measured anti-inflammatory activity (p < 0.01). The ECI exhibited a good ability to determine and predict the bioeffect-based quality grade for SR. Overall, the construction and application of the ECI for SR in this study provides a beneficial reference for quality evaluation methods of other herbs with distinct effects and active ingredients.
RESUMEN
AIMS AND OBJECTIVES: This study aimed to investigate the effectiveness of applying a multiphase optimization strategy (MOST) to enhance recovery after surgery (ERAS) protocols within the nursing management of children undergoing day surgery for snoring disease. BACKGROUND: While MOST has been applied to behavioral intervention research in smoking cessation, AIDS management, and weight loss by international scholars, its application in constructing nursing intervention projects remains relatively unexplored. DESIGN: Using convenience sampling, randomised controlled trial. METHODS: A convenience sampling method was employed. The study recruited 200 preschool children diagnosed with snoring who underwent day surgery at a specific hospital between January 2023 and January 2024. The participants were divided into two groups: a control group receiving standard nursing care and an experimental group receiving MOST-guided, integrated high-quality nursing plans specifically designed for children with snoring undergoing day surgery, adhering to established ERAS guidelines. RESULTS: Children in the experimental group exhibited significantly lower anxiety levels compared to the control group, both in the preoperative waiting area and upon returning to the ward (p < 0.01). While the quality of discharge teaching scale (QDTS) scores did not reveal a statistically significant difference between the groups (p > 0.01), the content of discharge instructions and the perceived effectiveness and skill of nurse guidance differed significantly between the control and experimental groups(p < 0.01). Notably, the experimental group experienced a demonstrably lower incidence of thirst, hunger, crying, aspiration, pain, and conversion of day ward to routine hospitalization mode compared to the control group (all p < 0.01). There was no significant difference in the incidence of postoperative nausea and vomiting between the groups after rehydration (p > 0.01). CONCLUSIONS: The implementation of ERAS protocols enhanced by MOST within the nursing management of children with snoring undergoing day surgery demonstrates significant efficacy. This approach can effectively reduce preoperative anxiety in children, improve the quality of discharge guidance provided to parents, and demonstrably decrease the occurrence of postoperative thirst, hunger, crying, aspiration, pain, and the need for unplanned hospitalization transitions within 6 h after surgery. RELEVANCE TO CLINICAL PRACTICE: It is necessary to provide fast rehabilitation nursing for children with snoring during daytime operation. Nurses should adopt the theory of fast rehabilitation based on multi-stage optimization strategy to promote children's fast rehabilitation after operation.
RESUMEN
Introduction: Poor graft function (PGF), characterized by myelosuppression, represents a significant challenge following allogeneic hematopoietic stem cell transplantation (allo-HSCT) with human cytomegalovirus (HCMV) being established as a risk factor for PGF. However, the underlying mechanism remains unclear. Bone marrow endothelial progenitor cells (BM-EPCs) play an important role in supporting hematopoiesis and their dysfunction contributes to PGF development. We aim to explore the effects of CMV on BM-EPCs and its underlying mechanism. Methods: We investigated the compromised functionality of EPCs derived from individuals diagnosed with HCMV viremia accompanied by PGF, as well as after infected by HCMV AD 169 strain in vitro, characterized by decreased cell proliferation, tube formation, migration and hematopoietic support, and increased apoptosis and secretion of TGF-ß1. Results: We demonstrated that HCMV-induced TGF-ß1 secretion by BM-EPCs played a dominant role in hematopoiesis suppression in vitro experiment. Moreover, HCMV down-regulates Vitamin D receptor (VDR) and subsequently activates p38 MAPK pathway to promote TGF-ß1 secretion by BM-EPCs. Discussion: HCMV could infect BM-EPCs and lead to their dysfunction. The secretion of TGF-ß1 by BM-EPCs is enhanced by CMV through the activation of p38 MAPK via a VDR-dependent mechanism, ultimately leading to compromised support for hematopoietic progenitors by BM EPCs, which May significantly contribute to the pathogenesis of PGF following allo-HSCT and provide innovative therapeutic strategies targeting PGF.
RESUMEN
BACKGROUND: Toxocara canis, the most prevalent helminth in dogs and other canines, is one of the socioeconomically important zoonotic parasites, particularly affecting pediatric and adolescent populations in impoverished communities. However, limited information is available regarding the proteomes of female and male adult T. canis. To address this knowledge gap, we performed a comprehensive proteomic analysis to identify the proteins with differential abundance (PDAs) and gender-specifically expressed proteins between the two sexes adult T. canis. METHODS: The comparative proteomic analysis was carried out by the Orbitrap mass spectrometry (MS) with asymmetric track lossless (Astral) analyzer. The difference analysis was conducted using t-test and the proteins verification was achieved through parallel reaction monitoring (PRM). The potential biological functions of identified adult T. canis proteins and PDAs were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The domain, transcription factor and subcellular localization of the identified proteins and PDAs were analyzed by InterPro, AnimalTFDB 4.0 and Cell-mPLOC 2.0 databases, respectively. RESULTS: A total of 8565 somatic proteins of adult T. canis were identified. Compared to male adult, 682 up-regulated PDAs and 844 down-regulated PDAs were identified in female adult with P-values < 0.05 and |log2FC| > 1, including 139 proteins exclusively expressed in female and 272 proteins exclusively expressed in male. The GO annotation analysis using all PDAs revealed that the main biological processes, cellular components and molecular functions corresponded to aminoglycan metabolic process, extracellular region and protein tyrosine phosphatase activity, respectively. The KEGG analysis using all PDAs showed that the pathways were mainly associated with adipocytokine signaling pathway, proximal tubule bicarbonate reclamation and PPAR signaling pathway. CONCLUSIONS: This study reveals the differential protein expression between female and male adult T. canis, providing valuable resource for developing the novel intervention strategies against T. canis infection in humans and animals, especially from the perspective of sexual development and reproduction.
Asunto(s)
Proteínas del Helminto , Proteómica , Toxocara canis , Animales , Femenino , Masculino , Proteómica/métodos , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/análisis , Proteoma , Perros , Toxocariasis/parasitología , Espectrometría de Masas , Factores Sexuales , Enfermedades de los Perros/parasitologíaRESUMEN
BACKGROUND: Babesia duncani is a pathogen within the phylum Apicomplexa that causes human babesiosis. It poses a significant threat to public health, as it can be transmitted not only through tick bites but also via blood transfusion. Consequently, an understanding of the gene functions of this pathogen is necessary for the development of drugs and vaccines. However, the absence of conditional gene knockdown tools has hindered the research on this pathogen. The auxin-inducible degron (AID) system is a rapid, reversible conditional knockdown system widely used in gene function studies. Thus, there is an urgent need to establish the AID system in B. duncani to study essential gene functions. METHODS: The endogenous genes of the Skp1-Cullin-F-box (SCF) complex in B. duncani were identified and confirmed through multiple sequence alignment and conserved domain analysis. The expression of the F-box protein TIR1 from Oryza sativa (OsTIR1) was achieved by constructing a transgenic parasite strain using a homologous recombination strategy. Polymerase chain reaction (PCR), western blot, and indirect immunofluorescence assay (IFA) were used to confirm the correct monoclonal parasite strain. The degradation of enhanced green fluorescent protein (eGFP) tagged with an AID degron was detected through western blot and live-cell fluorescence microscopy after treatment of indole-3-acetic acid (IAA). RESULTS: In this study, Skp1, Cul1, and Rbx1 of the SCF complex in B. duncani were identified through sequence alignment and domain analysis. A pure BdTIR1 strain with expression of the OsTIR1 gene was constructed through homologous recombination and confirmed. This strain showed no significant differences from the wild type (WT) in terms of growth rate and proportions of different parasite forms. The eGFP tagged with an AID degron was successfully induced for degradation using 500 µM IAA. Grayscale analysis of western blot indicated a 61.3% reduction in eGFP expression levels, while fluorescence intensity analysis showed a 77.5% decrease in fluorescence intensity. Increasing the IAA concentration to 2 mM accelerated eGFP degradation and enhanced the extent of degradation. CONCLUSIONS: This study demonstrated the functionality of the AID system in regulating protein levels by inducing rapid degradation of eGFP using IAA, providing an important research tool for studying essential gene functions related to invasion, egress, and virulence of B. duncani. Moreover, it also offers a construction strategy for apicomplexan parasites that have not developed an AID system.
Asunto(s)
Babesia , Técnicas de Silenciamiento del Gen , Ácidos Indolacéticos , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Babesia/genética , Babesia/efectos de los fármacos , Babesia/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Oryza/parasitología , Animales , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica , Babesiosis/parasitología , DegronesRESUMEN
Gastrointestinal tumors are the main causes of death among the patients. These tumors are mainly diagnosed in the advanced stages and their response to therapy is unfavorable. In spite of the development of conventional therapeutics including surgery, chemotherapy, radiotherapy and immunotherapy, the treatment of these tumors is still challenging. As a result, the new therapeutics based on (nano)biotechnology have been introduced. Hydrogels are polymeric 3D networks capable of absorbing water to swell with favorable biocompatibility. In spite of application of hydrogels in the treatment of different human diseases, their wide application in cancer therapy has been improved because of their potential in drug and gene delivery, boosting chemotherapy and immunotherapy as well as development of vaccines. The current review focuses on the role of hydrogels in the treatment of gastrointestinal tumors. Hydrogels provide delivery of drugs (both natural or synthetic compounds and their co-delivery) along with gene delivery. Along with delivery, hydrogels stimulate phototherapy (photothermal and photodynamic therapy) in the suppression of these tumors. Besides, the ability of hydrogels for the induction of immune-related cells such as dendritic cells can boost cancer immunotherapy. For more specific cancer therapy, the stimuli-responsive types of hydrogels including thermo- and pH-sensitive hydrogels along with their self-healing ability have improved the site specific drug delivery. Moreover, hydrogels are promising for diagnosis, circulating tumor cell isolation and detection of biomarkers in the gastrointestinal tumors, highlighting their importance in clinic. Hence, hydrogels are diagnostic and therapeutic tools for the gastrointestimal tumors.
Asunto(s)
Neoplasias Gastrointestinales , Hidrogeles , Humanos , Hidrogeles/uso terapéutico , Hidrogeles/química , Neoplasias Gastrointestinales/terapia , Nanomedicina Teranóstica/métodos , Animales , Sistemas de Liberación de Medicamentos , Inmunoterapia/métodosRESUMEN
Background: Interleukin-7 receptor (IL7R) mutation has been demonstrated to be an adverse prognostic factor in acute lymphoblastic leukemia (ALL) patients. However, the effects of the IL7R mutation on acute myeloid leukemia (AML) have rarely been reported. Here, we investigated IL7R mutations and their effects on AML patients. Methods: A total of 346 newly diagnosed AML patients from January 2017 to July 2020 at Nanfang Hospital were analyzed in this study. A genomic panel of 167 gene targets was detected by next-generation sequencing. Results: Among 346 patients, 33 (9.5%) AML patients carried IL7R mutations. With a median follow-up of 50.7 months (95% confidence interval (CI) 17.3-62.2), the 5-year overall survival (OS) rates were 51.5% (95% CI 37.0%-71.0%) and 72.2% (95% CI 67.4%-77.3%; p = 0.008), the 5-year event-free survival (EFS) rates were 36.1% (95% CI 23.2%-57.1%) and 58.1% (95% CI 52.9%-63.8%; p = 0.005), the 5-year non-relapse mortality (NRM) were 21.4% (95% CI 8.5%-38.2%) and 6.2% (95% CI 3.7%-9.5%; p = 0.004) in the IL7R mutant (IL7R MUT ) group and non-IL7R mutant (IL7R WT ) group, respectively. There is no significant difference in the disease-free survival (75.1% vs 73.5%, p = 0.885) and cumulative incidence of relapse (25.7% vs 25.2%, p = 0.933) between IL7R MUT and IL7R WT group. Furthermore, patients who underwent hematopoietic stem cell transplantation (HSCT) still had more adverse outcomes in the IL7R MUT group than in the IL7R WT group (5-year OS: 61.9% vs 85.3%, p = 0.003). In the TET2 (p = 0.013) and DNA methyltransferase 3A (DNMT3A; p = 0.046) mutation subgroups, the presence of IL7R mutations was associated with worse OS than in AML patients without IL7R mutations. Conclusion: Our study demonstrated that the IL7R mutation is associated with an inferior prognosis for AML patients. Patients with IL7R mutations have higher NRM, shorter OS, and EFS than patients without IL7R mutations, even patients who have undergone HSCT. Future larger and multicentric prospective studies will be explored.
The effects of IL7R mutation on AML patients With the development of NGS, more and more cytogenetic and molecular markers have been found to be associated with prognosis of ALL. IL7R mutation is associated with an inferior prognosis for AML patients. Patients with IL7R mutation have higher NRM, shorter OS and EFS than patients without IL7R mutation, even patients who have undergone HSCT.
RESUMEN
Osteoarthritis (OA) is an aging-associated disease characterized by joint stiffness pain and destroyed articular cartilage. Traditional treatments for OA are limited to alleviating various OA symptoms. There is a lack of drugs available in clinical practice that can truly repair cartilage damage. Here, we developed the chondroitin sulfate analog CS-semi5, semi-synthesized from chondroitin sulfate A. In vivo, CS-semi5 alleviated inflammation, provided analgesic effects, and protected cartilage in the modified Hulth OA rat model and papain-induced OA rat model. A bioinformatics analysis was performed on samples from OA patients and an exosome analysis on papain-induced OA rats, revealing miR-122-5p as the key regulator associated with CS-semi5 in OA treatment. Binding prediction revealed that miR-122-5p acted on the 3'-untranslated region of p38 mitogen-activated protein kinase, which was related to MMP13 regulation. Subsequent in vitro experiments revealed that CS-semi5 effectively reduced cartilage degeneration and maintained matrix homeostasis by inhibiting matrix breakdown through the miR-122-5p/p38/MMP13 axis, which was further validated in the articular cartilage of OA rats. This is the first study to investigate the semi-synthesized chondroitin sulfate CS-semi5, revealing its cartilage-protecting, anti-inflammatory, and analgesic properties that show promising therapeutic effects in OA via the miR-122-5p/p38/MMP13 pathway.
RESUMEN
BACKGROUND: When considering hepatectomy for elderly HCC patients, it's essential to assess surgical safety and survival benefits. This study investigated the impact of preoperative frailty, assessed with the Clinical Frailty Scale (CFS), on outcomes for octogenarians undergoing HCC hepatectomy. METHODS: A retrospective cohort study of octogenarians who had hepatectomy for HCC between 2010 and 2022 at 16 hepatobiliary centers was conducted. Patients were categorized as frail or non-frail based on preoperative CFS, with frailty defined as CFS ≥5. The primary endpoints were overall survival (OS), recurrence-free survival (RFS), and cancer-specific survival (CSS), with perioperative outcomes as secondary endpoints. RESULTS: Among 240 octogenarians, 105 were characterized as being frail. Frail patients had a higher incidence of postoperative 30-day morbidity and postoperative 30-day and 90-day mortality versus non-frail patients. Meanwhile, 5-year OS, RFS and CSS among frail patients were lower compared with non-frail patients. Univariable and multivariable analysis revealed that preoperative frailty was an independent risk factor of postoperative 30-day morbidity (OR: 2.060), OS (HR: 2.384), RFS (HR: 2.190) and CSS (HR: 2.203). CONCLUSION: Preoperative frailty, as assessed by the CFS, was strongly associated with both short-term outcomes and long-term survival among octogenarians undergoing hepatectomy for HCC. Incorporating frailty assessment into the preoperative evaluation may help optimize patient selection and perioperative care.
RESUMEN
BACKGROUND: Endometrial cancer (EC) tissues express CYP7B1, but its association with prognosis needs to be investigated. METHODS: Immunohistochemistry and image analysis software were used to assess CYP7B1 protein expression in paraffin-embedded endometrial tumor sections. Associations between CYP7B1 and clinical factors were tested with the Wilcoxon rank-sum test. Kaplan-Meier curves were employed to describe survival, and differences were assessed using the log-rank test. Cox regression analysis was used to assess the association between CYP7B1 expression and the prognosis of patients with EC. RESULTS: A total of 307 patients were enrolled with an average age of 52.6 ± 8.0 years at diagnosis. During the period of follow-up, 46 patients (15.0%) died, and 29 (9.4%) suffered recurrence. The expression of CYP7B1 protein is significantly higher in the cytoplasm than in the nucleus (P < 0.001). Patients aged < 55 years (P = 0.040), ER-positive patients (P = 0.028) and PR-positive patients (P < 0.001) report higher levels of CYP7B1 protein. Both univariate (HR = 0.41, 95% CI: 0.18-0.90, P = 0.025) and multivariate (HR = 0.35, 95%CI:0.16-0.79, P = 0.011) Cox regression analyses demonstrate that high CYP7B1 protein expression predicts longer overall survival (OS). When considering only ER-positive patients (n = 265), CYP7B1 protein expression is more strongly associated with OS (HR = 0.20,95%CI:0.08-0.52, P = 0.001). The 3-year OS and 5-year OS in the low-CYP7B1 subgroup are 81.6% and 76.8%, respectively; while in the high-CYP7B1 subgroup are 93.0% and 92.0%, respectively (P = 0.021). CONCLUSIONS: High CYP7B1 protein expression predicted longer OS, suggesting that it may serve as an important molecular marker for EC prognosis.
Asunto(s)
Biomarcadores de Tumor , Familia 7 del Citocromo P450 , Neoplasias Endometriales , Humanos , Femenino , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/mortalidad , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Biomarcadores de Tumor/metabolismo , Estudios de Seguimiento , Tasa de Supervivencia , Familia 7 del Citocromo P450/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Adulto , Estadificación de Neoplasias , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Anciano , Esteroide HidroxilasasRESUMEN
With the increasing demand for plastics, plastic pollution is growing rapidly. A significant amount of plastic has leaked into the environment, leading to severe environmental issues. Biodegradable plastics are considered promising alternatives to conventional durable plastics, and the environmental impacts of biodegradable plastics have received increasing attention. Poly (butylene adipate-co-terephthalate) (PBAT) is a commercial and cost-competitive biodegradable polymer and has been applied in the packaging and agriculture sectors. The environmental performances of PBAT with second-generation feedstocks from forestry waste have been rarely investigated. Since China is the leading global producer and exporter of PBAT polymer, Chinese cradle-to-gate life cycle inventories of PBAT were compiled in this study. A comparative life cycle assessment (LCA) was conducted to explore the potential for environmental performance of PBAT with second-generation bio-based feedstock compared to fossil-based PBAT and conventional plastics. The results showed that feedstocks contributed to more than 70 % of 18 environmental impact categories of fossil-based PBAT. In comparison, PBAT with second-generation bio-based feedstock reduces the environmental loads in 16 impact categories by 15-85 %, and renewable energy substitution has the potential to reduce environmental impacts by 10 %. Bio-based PBAT performs better than PVC, PP, HDPE, LDPE, and PET in 16 impact categories by 15-80 %. Bio-based PBAT has GWP of 3.72 kg CO2 eq, which is 37 % lower than fossil-based PBAT (5.89 kg CO2 eq) and 18-32 % lower than conventional plastics. Since feedstock dominates the environmental performance of PBAT, the development of biomanufacturing technologies for bio-based polymers and chemicals could significantly improve environmental performance of biodegradable plastics and promote the sustainable development of the plastic industry. Results could serve as the basis for environmental impact and mitigation strategies for biodegradable plastics with bio-based feedstocks, as well as the sustainable development of the PBAT industry.
RESUMEN
In the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), microplastic pollution in urban rivers is a prominent problem due to the developed economy and high industrial intensity. Using the Xiaohai River, Hanxi River and Dongguan Canal in Dongguan City, an important node city in the GBA, as an example, microplastic characteristics, drivers and ecological risks in the surface water of three rivers were investigated. Results showed that the average abundance of rivers in the wet period (1646.22 ± 154.73 items/m3) was 4.7 times higher than that in the dry period (351.09 ± 34.2 items/m3). Microplastics were mainly in the form of fragments and fibers, with a size range of 30-500 µm, and appeared transparent with white color. The microplastic polymer types PE, PP, PET and PA accounted for more than 70%. There are large differences in the characteristics of microplastic pollution during different hydrological periods. Redundancy analysis showed that the distribution of plastics, chemical materials, packaging and printing industries along the rivers dominated the differences in microplastic abundance. The electronic information industry contributed most to the composition of microplastic polymer types. The polymer hazard index, pollution load index, and potential ecological risk index for rivers indicate a medium-high risk classification or higher. Therefore, the industrial layout along the urban rivers should be rationalized, the disposal of microplastics in wastewater should be increased, and the use of green plastic products should be promoted. This study provides support for the management of microplastic pollution in urban surface water in the GBA.
RESUMEN
Background: The remission rate of myeloperoxidase (MPO)-antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) patients who received standard induction therapy is far from satisfactory. Improving the remission rate of MPO-AAV patients is essential. Hydroxychloroquine (HCQ), one of the classic antimalarial drugs, has been widely used in various autoimmune rheumatic diseases. This retrospective observational cohort study is aimed to evaluate the efficacy and safety of HCQ during induction treatment for MPO-AAV. Methods: The medical records of patients diagnosed with MPO-AAV at Xiangya Hospital, Central South University from January 2021 to September 2023 were collected. They were assigned to the HCQ group or control group according to whether they used HCQ. The patients included were screened by propensity score matching. To evaluate whether MPO-AAV patients benefited from HCQ, we compared the prognosis of the two groups. The adverse effects of HCQ during follow-up were recorded. Results: The composition ratio of complete remission, response and treatment resistance between HCQ group and control group were different statistically (P = .021). There was no significant difference between the two groups in 1-year renal survival (P = .789). The HCQ group had better 1-year patient survival than the control group (P = .049). No serious adverse effects were documented in the HCQ group. Conclusions: HCQ together with standard induction treatment may improve the remission rate of MPO-AAV patients, and HCQ had good safety in our study.
RESUMEN
Life-threatening hypertension remains inadequately controlled in clinics due to its heterogeneous renin levels. Rapid stratification of hypertension through renin analysis is crucial for effective personalized treatment, yet an ultrasensitive detection approach is currently lacking. Here, we report activatable renin nanoprobes (ARNs) for non-invasive and ultrasensitive profiling of renin activity and guiding antihypertensive treatment decision through near-infrared fluorescence (NIRF) in vivo imaging and in vitro urinalysis. ARNs are intrinsically non-fluorescent due to NIRF reporter connected to a gold nanocluster through a renin-responsive peptide. In hyperreninemia mouse models, ARNs specifically react with renin to liberate the renal clearable NIRF reporter for accurate renin detection that outperforms the gold standard radioimmunoassay. Such specific and sensitive detection also enables imaging-based high-throughput screening of antihypertensive drugs. In hypertensive rat models, ARNs enable ultrasensitive detection of both plasma and urinary renin, facilitating renin-guided precision treatment and significantly improving hypertension control rate (90 % versus 58 %). Our nanoprobe platform holds great potential for assisting clinicians in rapidly and accurately classifying hypertensive patients and improving outcomes through tailored treatment selection.
RESUMEN
AIMS: Poly (ADP-ribose) polymerase (PARP) has been extensively investigated in human cancers. Recent studies verified that current available PARP inhibitors (Olaparib or Veliparib) provided clinical palliation of clinical patients suffering from paclitaxel-induced neuropathic pain (PINP). However, the underlying mechanism of PARP overactivation in the development of PINP remains to be investigated. METHODS AND RESULTS: We reported induction of DNA oxidative damage, PARP-1 overactivation, and subsequent nicotinamide adenine dinucleotide (NAD+) depletion as crucial events in the pathogenesis of PINP. Therefore, we developed an Olaparib PROTAC to achieve the efficient degradation of PARP. Continuous intrathecal injection of Olaparib PROTAC protected against PINP by inhibiting the activity of PARP-1 in rats. PARP-1, but not PARP-2, was shown to be a crucial enzyme in the development of PINP. Specific inhibition of PARP-1 enhanced mitochondrial redox metabolism partly by upregulating the expression and deacetylase activity of sirtuin-3 (SIRT3) in the dorsal root ganglions and spinal cord in the PINP rats. Moreover, an increase in the NAD+ level was found to be a crucial mechanism by which PARP-1 inhibition enhanced SIRT3 activity. CONCLUSION: The findings provide a novel insight into the mechanism of DNA oxidative damage in the development of PINP and implicate PARP-1 as a possible therapeutic target for clinical PINP treatment.
Asunto(s)
Daño del ADN , Mitocondrias , Neuralgia , Paclitaxel , Poli(ADP-Ribosa) Polimerasa-1 , Animales , Masculino , Ratas , Modelos Animales de Enfermedad , Daño del ADN/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NAD/metabolismo , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Paclitaxel/toxicidad , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismoRESUMEN
Integrating RGB and Event (RGBE) multi-domain information obtained by high-dynamic-range and temporal-resolution event cameras has been considered an effective scheme for robust object tracking. However, existing RGBE tracking methods have overlooked the unique spatio-temporal features over different domains, leading to object tracking failure and inefficiency, especally for objects against complex backgrounds. To address this problem, we propose a novel tracker based on adaptive-time feature extraction hybrid networks, namely Siamese Event Frame Tracker (SiamEFT), which focuses on the effective representation and utilization of the diverse spatio-temporal features of RGBE. We first design an adaptive-time attention module to aggregate event data into frames based on adaptive-time weights to enhance information representation. Subsequently, the SiamEF module and cross-network fusion module combining artificial neural networks and spiking neural networks hybrid network are designed to effectively extract and fuse the spatio-temporal features of RGBE. Extensive experiments on two RGBE datasets (VisEvent and COESOT) show that the SiamEFT achieves a success rate of 0.456 and 0.574, outperforming the state-of-the-art competing methods and exhibiting a 2.3-fold enhancement in efficiency. These results validate the superior accuracy and efficiency of SiamEFT in diverse and challenging scenes.
RESUMEN
Mitochondria, responsible for cellular energy synthesis and signal transduction, intricately regulate diverse metabolic processes, mediating fundamental biological phenomena such as cell growth, aging, and apoptosis. Tumor invasion and metastasis, key characteristics of malignancies, significantly impact patient prognosis. Tumor cells frequently exhibit metabolic abnormalities in mitochondria, including alterations in metabolic dynamics and changes in the expression of relevant metabolic genes and associated signal transduction pathways. Recent investigations unveil further insights into mitochondrial metabolic abnormalities, revealing their active involvement in tumor cell proliferation, resistance to chemotherapy, and a crucial role in tumor cell invasion and metastasis. This paper comprehensively outlines the latest research advancements in mitochondrial structure and metabolic function. Emphasis is placed on summarizing the role of mitochondrial metabolic abnormalities in tumor invasion and metastasis, including alterations in the mitochondrial genome (mutations), activation of mitochondrial-to-nuclear signaling, and dynamics within the mitochondria, all intricately linked to the processes of tumor invasion and metastasis. In conclusion, the paper discusses unresolved scientific questions in this field, aiming to provide a theoretical foundation and novel perspectives for developing innovative strategies targeting tumor invasion and metastasis based on mitochondrial biology.
Asunto(s)
Mitocondrias , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias , Transducción de Señal , Humanos , Mitocondrias/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Animales , Metabolismo EnergéticoRESUMEN
The synthesis of zeolites through more efficient, environmentally friendly, and cost-effective methods was deemed significant in both industrial applications and academic fields. Conventional hydrothermal synthesis strategies have encountered difficulties in producing pure silica MFI zeolite (silicalite-1) under amine-free conditions. This was primarily attributed to the competitive growth of quartz, keatite, or magadiite during the crystallization process. In this work, it was found that the lack of nucleation ability was an important reason for the poor crystallization stability of the methanol solution. Well-crystallized silicalite-1 zeolites with uniform particle sizes were achieved through the cooperative guidance of methanol and seed crystals. Large-scale experiments with silicalite-1 zeolite demonstrated good reproducibility. Combined with the TG-IR and N2 adsorption-desorption results, it was observed that, when an extremely small amount of seed (0.97 wt %) was introduced, methanol could play a role as a crystallization promoter in the hydrothermal synthesis system. Furthermore, a lower alkaline-to-silica ratio and water-to-silica ratio were conducive to the progression of the crystallization process. In summary, this work presented a hydrothermal synthesis strategy for the synthesis of silicalite-1 zeolite in a methanol solution without the need for a large amount of seeds and provided an effective pathway for the low-cost, large-scale production of silicalite-1 zeolite.