Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 361, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910236

RESUMEN

Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.


Asunto(s)
Autofagia , Frío , Exosomas , Ratones Endogámicos C57BL , MicroARNs , Osteogénesis , Animales , Autofagia/efectos de los fármacos , Ratones , Exosomas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/patología , Diferenciación Celular/efectos de los fármacos , Huesos/metabolismo , Femenino , Densidad Ósea , Sirolimus/farmacología
2.
J Nanobiotechnology ; 21(1): 315, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667298

RESUMEN

Vascular calcification often occurs in patients with chronic renal failure (CRF), which significantly increases the incidence of cardiovascular events in CRF patients. Our previous studies identified the crosstalk between the endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and the paracrine effect of VSMCs, which regulate the calcification of VSMCs. Herein, we aim to investigate the effects of exosomes secreted by high phosphorus (HPi) -induced adventitial fibroblasts (AFs) on the calcification of VSMCs and the underlying mechanism, which will further elucidate the important role of AFs in high phosphorus vascular wall microenvironment. The conditioned medium of HPi-induced AFs promotes the calcification of VSMCs, which is partially abrogated by GW4869, a blocker of exosomes biogenesis or release. Exosomes secreted by high phosphorus-induced AFs (AFsHPi-Exos) show similar effects on VSMCs. miR-21-5p is enriched in AFsHPi-Exos, and miR-21-5p enhances osteoblast-like differentiation of VSMCs by downregulating cysteine-rich motor neuron 1 (Crim1) expression. AFsHPi-Exos and exosomes secreted by AFs with overexpression of miR-21-5p (AFsmiR21M-Exos) significantly accelerate vascular calcification in CRF mice. In general, AFsHPi-Exos promote the calcification of VSMCs and vascular calcification by delivering miR-21-5p to VSMCs and subsequently inhibiting the expression of Crim1. Combined with our previous studies, the present experiment supports the theory of vascular wall microenvironment.


Asunto(s)
Exosomas , MicroARNs , Calcificación Vascular , Animales , Ratones , Células Endoteliales , Fibroblastos , Fósforo , MicroARNs/genética , Receptores de Proteínas Morfogenéticas Óseas
3.
J Nanobiotechnology ; 20(1): 334, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842695

RESUMEN

The pathogenesis of vascular calcification in diabetic patients remains elusive. As an effective information transmitter, small extracellular vesicles (sEVs) carry abundant microRNAs (miRNAs) that regulate the physiological and pathological states of recipient cells. In the present study, significant up-regulation of miR-126-5p was observed in sEVs isolated from human umbilical vein endothelial cells (HUVECs) stimulated with advanced glycation end-products (A-EC/sEVs). Intriguingly, these sEVs suppressed the osteogenic differentiation of vascular smooth muscle cells (VSMCs) by targeting BMPR1B, which encodes the receptor for BMP, thereby blocking the smad1/5/9 signalling pathway. In addition, knocking down miR-126-5p in HUVECs significantly diminished the anti-calcification effect of A-EC/sEVs in a mouse model of type 2 diabetes. Overall, miR-126-5p is highly enriched in sEVs derived from AGEs stimulated HUVECs and can target BMPR1B to negatively regulate the trans-differentiation of VSMCs both in vitro and in vivo.


Asunto(s)
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , MicroARNs , Calcificación Vascular , Animales , Vesículas Extracelulares/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , MicroARNs/metabolismo , Osteogénesis , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
4.
Front Endocrinol (Lausanne) ; 13: 863708, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784574

RESUMEN

Histone methylation is an epigenetic change mediated by histone methyltransferase, and has been connected to the beginning and progression of several diseases. The most common ailments that affect the elderly are cardiovascular and cerebrovascular disorders. They are the leading causes of death, and their incidence is linked to vascular calcification (VC). The key mechanism of VC is the transformation of vascular smooth muscle cells (VSMCs) into osteoblast-like phenotypes, which is a highly adjustable process involving a variety of complex pathophysiological processes, such as metabolic abnormalities, apoptosis, oxidative stress and signalling pathways. Many researchers have investigated the mechanism of VC and related targets for the prevention and treatment of cardiovascular and cerebrovascular diseases. Their findings revealed that histone lysine methylation modification may play a key role in the various stages of VC. As a result, a thorough examination of the role and mechanism of lysine methylation modification in physiological and pathological states is critical, not only for identifying specific molecular markers of VC and new therapeutic targets, but also for directing the development of new related drugs. Finally, we provide this review to discover the association between histone methylation modification and VC, as well as diverse approaches with which to investigate the pathophysiology of VC and prospective treatment possibilities.


Asunto(s)
Lisina , Calcificación Vascular , Anciano , Histonas/metabolismo , Humanos , Metilación , Estudios Prospectivos , Calcificación Vascular/genética , Calcificación Vascular/patología
5.
Front Pharmacol ; 12: 659626, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194325

RESUMEN

Objectives: Dendrobium officinale polysaccharide (DOP) is the main active ingredient in a valuable traditional Chinese medicine, which exerts several pharmacological activities including hepatoprotection and hypoglycemic effects. However, the effects of DOP on obesity-associated insulin resistance (IR) and lipid metabolism remain unknown. This study aimed to investigate the role of DOP in IR and abnormal lipid metabolism in obese mice. Methods: IR models were established using 3T3-L1 adipocytes, C2C12 myocytes, and primary cultured hepatocytes exposed to palmitate acid. After treatment with DOP, insulin-stimulated glucose uptake, glucose release, and AKT phosphorylation was detected. Fasting blood glucose, fasting serum insulin, the glucose tolerance test (GTT), and the insulin tolerance test (ITT) were measured to evaluate IR of obese mice. Lipid analysis was conducted to evaluate the effects of DOP on lipid metabolism in obese mice. Results: In vitro, DOP treatment ameliorated palmitic acid-induced IR in adipocytes, myocytes, and hepatocytes. DOP regulated cellular insulin sensitivity via the peroxisome proliferator-activated receptor-γ (PPAR-γ). Furthermore, administration of DOP significantly reduced the IR and visceral adipose tissue (VAT) inflammation of diet-induced obese (DIO) and the genetically-induced obesity mice (ob/ob) mouse models. In addition, DOP treatment attenuated the high-fat diet (HFD)-induced liver lipid accumulation by reducing liver triglycerides (TG), plasma free fatty acid (FFA), serum cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels, while increasing HDL-C levels. Conclusion: DOP could improve obesity-associated IR and abnormal lipid metabolism through its activities on PPAR-γ, and may serve as a potential therapeutic agent for obesity-associated insulin resistance and lipid metabolism disorder.

6.
ScientificWorldJournal ; 2013: 403642, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223029

RESUMEN

We study Ε-Henig saddle points and duality of set-valued optimization problems in the setting of real linear spaces. Firstly, an equivalent characterization of Ε-Henig saddle point of the Lagrangian set-valued map is obtained. Secondly, under the assumption of the generalized cone subconvexlikeness of set-valued maps, the relationship between the Ε-Henig saddle point of the Lagrangian set-valued map and the Ε-Henig properly efficient element of the set-valued optimization problem is presented. Finally, some duality theorems are given.


Asunto(s)
Conceptos Matemáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA