Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 237: 124071, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958453

RESUMEN

The B-box (BBX) transcription factors are widely implicated in plant growth, development, and response to various biotic and abiotic stresses. However, their roles in the response of pepper to Phytophthora capsici infection (PCI) remain largely unexplored. Here, we report a total of 25 CaBBX genes with an uneven distribution were identified in pepper genome, and their characteristics, phylogenetic relationships, gene structures, conserved domains, and expression profiles were validated. CaBBXs were classified into five major clades (I to V) based on their phylogenetic relationships and conserved domains (presence of one or two B-box domains and a CCT domain). Gene duplication analysis demonstrated that there are two segmental duplication events but no tandem duplication event within pepper genome. Conserved motif and gene structure analysis revealed that the CaBBXs in the same clade have relatively similar motif arrangements and exon-intron patterns. Expression analysis revealed that the CaBBX genes have different expression levels in various tissues, and some of which were significantly induced during PCI and exogenous salicylic acid (SA) treatment. Among them, CaBBX14 displayed remarkable changed expression during PCI and SA treatment. The silencing of CaBBX14 increases pepper susceptibility to PCI, and also decreases in SA content and expression of pathogenesis-related (PR) and SA-related genes compared with control plants. Together, these findings advance our knowledge base on biological functions of CaBBXs in pepper during PCI through the SA signaling pathway, and we provide an example demonstrating that the potential of CaBBX14 to improve pepper resistance to PCI.


Asunto(s)
Capsicum , Phytophthora , Phytophthora/metabolismo , Filogenia , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas
2.
Biology (Basel) ; 11(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36009761

RESUMEN

Calcium ions are important second messengers, playing an important role in the signal transduction pathways. Hyperosmolality gated calcium-permeable channels (OSCA) gene family members play critical modulating roles in response to osmotic-related abiotic stress as well as other abiotic and biotic stresses, which has been reported in many plant species such as Arabidopsis, rice, maize, and wheat. However, there has been no report about the identification and expression profile of the OSCA genes in cucumber. In this study, a total of nine OSCA genes were identified, which are unevenly distributed on the six chromosomes of cucumber. Phylogenetic analysis revealed that the OSCAs of cucumber, Arabidopsis, rice and maize were clustered into four clades. The motif arrangement of CsOSCAs was strongly conserved, and the CsOSCA genes in each group had similar genetic structure. A total of 11 and 10 types of cis-elements related to hormone and stress, respectively, were identified in the promoter regions of CsOSCA genes. Gene expression analysis indicated that the CsOSCA genes have different expression patterns in various tissues, and some of them were regulated by three osmotic-related abiotic stresses (salt, drought and ABA) and three biotic stresses (powdery mildew, downy mildew, and root-knot nematode). As the first genome-wide identification and characterization of the OSCA gene family in cucumber, this study lays a foundation for research on the biological function and evolutionary process of this gene family, which is of great significance for exploiting stress resistant cucumber varieties.

3.
Biochem Genet ; 59(4): 884-901, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33554320

RESUMEN

Zinc finger-homeodomain (ZF-HD) proteins encode a family of plant-specific transcription factors that play essential roles in regulating plant growth and development as well as responses to abiotic/biotic stresses by activating or repressing the target genes. In this study, genome-wide characterization and expression profiling of the ZF-HD gene family in cucumber (Cucumis sativus) were performed for the first time. By using bioinformatics approaches, a total of 13 ZF-HD genes (designated as CsMIF1-CsMIF3 and CsZHD1-CsZHD10) were identified in the cucumber genome, which were unevenly distributed on six chromosomes. According to the phylogenetic analysis of cucumber and other species, they were divided into two distinct families, MINI ZINC FINGER (MIF) and zinc finger-homeodomain (ZHD), and the ZHD family was further divided into six subfamilies (ZHDI-ZHDVI). CsZF-HD members were mostly conserved in each subfamily with minor variations in motif distribution, and gene structure analysis showed that the CsZF-HD genes had only one intron or no intron at all. Expression analysis showed that most CsZF-HD genes had tissue-specific expression patterns, and some of them exhibited highly variable expression during fruit development. qRT-PCR results indicated that the selected CsZF-HD genes were responsive to drought stress, and some of them were differentially expressed in response to the inoculation of powdery mildew (PM) and downy mildew (DM) based on publicly available RNA-seq data. The results lay the foundation for further functional analysis of the ZF-HD genes and explore their potential application to the improvement of stress tolerance in cucumber.


Asunto(s)
Cucumis sativus/genética , Proteínas de Homeodominio/genética , Proteínas de Plantas , Dedos de Zinc/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Plantas/genética , Estrés Fisiológico , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA