Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 15(12)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38140060

RESUMEN

(1) Background: In patients with Wilson's disease, the deficiency of the copper carrier ATP7B causes the accumulation of copper in the liver, brain and various other organs. Lifelong treatment is therefore mandatory, using copper chelators to increase the excretion of copper and to avoid life-threatening damage. The clinically used reference drug, D-penicillamine, exhibit numerous adverse effects, especially a frequent severe and irreversible neurological worsening, mainly due to its lack of metal selectivity; (2) Methods: A new tetradentate ligand based on an 8-aminoquinoline entity, named TDMQ20, which is highly selective for copper compared with other metal ions, is evaluated in "toxic milk" TX mice as an oral treatment of this Wilson's disease murine model; (3) Results: The concentration of copper in the liver of "toxic milk" TX mice decreased and the fecal excretion of copper increased upon oral treatment with TDMQ20. Both effects are dose-dependent, and more pronounced than those of D-penicillamine; (4) Conclusions: The TDMQ20 copper chelator is more efficient than the reference drug D-penicillamine for the treatment of a Wilson's disease murine model. Pharmacological data obtained with TDMQ20 on the TX mouse model strongly support the selection of this ligand as a drug candidate for this genetic disease.

2.
Pharmaceutics ; 14(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36559185

RESUMEN

(1) Background: TDMQ20 is a specific regulator of copper homeostasis in the brain, able to inhibit cognitive impairment in the early stages of Alzheimer's disease (AD) in mouse models of AD. To promote the further development of this drug-candidate, preliminary data on the pharmacokinetics of TDMQ20 in a mammal model have been collected. Since TDMQ20 should be administered orally, its absorption by the gastrointestinal tract was evaluated by comparison of blood concentrations after administration by oral and IV routes, and its ability to reach its target (the brain) was confirmed by comparison between blood and brain concentrations after oral administration. (2) Methods: plasmatic and brain concentrations of the drug after oral or intravenous treatment of rats at pharmacologically relevant doses were determined as a function of time. (3) Results: oral absorption of TDMQ20 was rapid and bioavailability was high (66% and 86% for males and females, respectively). The drug accumulated in the brain for several hours (brain-plasma ratio 3 h after oral administration = 2.6), and was then efficiently cleared. (4) Conclusions: these data confirm that TDMQ20 efficiently crosses the brain-blood barrier and is a relevant drug-candidate to treat AD.

3.
J Neurosci Res ; 85(14): 3071-8, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17671990

RESUMEN

Although protein kinase Cdk5-p35 is important in many aspects of the development and function of the central nervous system, relatively little is known about its regulation. In the present study, we examined the relationship between the association of this kinase with membranes and its activity in perinatal and adult rat brains. Cdk5-p35 in perinatal brain exhibited higher activity than that found in adult tissue. Gel filtration chromatography revealed that a portion of Cdk5-p35 from fetal brain occurred as a soluble complex, whereas Cdk5-p35 in adult brain occurred predominantly as a membrane-bound complex. Furthermore, soluble Cdk5-p35 in perinatal brain displayed elevated kinase activity, whereas membrane-bound Cdk5-p35 was highly active only in the presence of detergent. This more active soluble form of Cdk5-p35 correlated to a form in which p35 was phosphorylated, whereas the less active membrane-bound form of Cdk5 correlated to the dephosphorylated form of p35, as evidenced by a downward shift in electrophoretic mobility. Cdk5 activity and transition from soluble to membrane-associated compartments could be modulated by conditions that affected the phosphorylation or dephosphorylation of p35. For example, dephosphorylation of p35 in brain extracts was suppressed by selective inhibition of protein phosphatase-1. Together, these results suggest that the kinase activity of Cdk5-p35 is regulated through its association with membranes, which in turn is under the control of Cdk5-dependent phosphorylation and protein phosphatase-1-dependent dephosphorylation of p35.


Asunto(s)
Encéfalo/enzimología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Membranas/enzimología , Fosfotransferasas/metabolismo , Adenosina Trifosfato/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inmunoprecipitación/métodos , Membranas/efectos de los fármacos , Fosforilación , Purinas/farmacología , Ratas , Ratas Wistar , Roscovitina
4.
J Neurochem ; 94(6): 1535-45, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15992363

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase of increasingly recognized importance in a large number of fields, ranging from neuronal migration to synaptic plasticity and neurodegeneration. However, little is known about its mechanism of activation beyond its requirement for binding to p35 or p39. We have examined membrane interactions as one method of regulating the Cdk5-p35 complex. The kinase activity of Cdk5-p35 is low when it is bound to membranes. The Cdk5-p35 found in rat brain extract associates with membranes in two ways. Approximately 75% of complexes associate with membranes via ionic interactions only, and the remaining 25% associate with membranes via ionic interactions together with lipidic interactions. Solubilization with detergent or high-salt solution activates Cdk5-p35 several fold, and this activation is reversible. Therefore, membrane interactions represent a novel mechanism for the regulation of Cdk5-p35 kinase activity.


Asunto(s)
Encéfalo/enzimología , Membrana Celular/enzimología , Quinasas Ciclina-Dependientes/metabolismo , Activación Enzimática/fisiología , Proteínas de la Membrana/metabolismo , Fosfotransferasas/metabolismo , Animales , Quinasa 5 Dependiente de la Ciclina , Detergentes/química , Sustancias Macromoleculares/metabolismo , Lípidos de la Membrana/metabolismo , Ratas , Ratas Wistar , Solubilidad/efectos de los fármacos , Fracciones Subcelulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA