Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Biol Evol ; 16(4)2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38451738

RESUMEN

Evolutionary convergences are observed at all levels, from phenotype to DNA and protein sequences, and changes at these different levels tend to be correlated. Notably, convergent mutations can lead to convergent changes in phenotype, such as changes in metabolism, drug resistance, and other adaptations to changing environments. We propose a two-component approach to detect mutations subject to convergent evolution in protein alignments. The "Emergence" component selects mutations that emerge more often than expected, while the "Correlation" component selects mutations that correlate with the convergent phenotype under study. With regard to Emergence, a phylogeny deduced from the alignment is provided by the user and is used to simulate the evolution of each alignment position. These simulations allow us to estimate the expected number of mutations in a neutral model, which is compared to the observed number of mutations in the data studied. In Correlation, a comparative phylogenetic approach, is used to measure whether the presence of each of the observed mutations is correlated with the convergent phenotype. Each component can be used on its own, for example Emergence when no phenotype is available. Our method is implemented in a standalone workflow and a webserver, called ConDor. We evaluate the properties of ConDor using simulated data, and we apply it to three real datasets: sedge PEPC proteins, HIV reverse transcriptase, and fish rhodopsin. The results show that the two components of ConDor complement each other, with an overall accuracy that compares favorably to other available tools, especially on large datasets.


Asunto(s)
Evolución Molecular , Peces , Animales , Filogenia , Peces/genética , Rodopsina/genética , Mutación
2.
Nanomaterials (Basel) ; 14(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38535643

RESUMEN

Addressing periprosthetic infections, which present significant healing challenges that often require revision surgeries, necessitates the development of novel antibacterial materials and implants. Current research focuses on creating materials that hinder bacterial adhesion, colonization, and proliferation in surrounding tissues. Boron (B)-containing compounds are known for their antibacterial properties and potential in bone metabolism for regenerative medicine. In this study, we synthesized B-containing tricalcium phosphate (0.3B-TCP) with 1.1 wt.% B content via precipitation from aqueous solutions and sintering at 1100 °C. X-ray diffraction confirmed the ceramic's primary crystalline phase as ß-TCP, with B evenly distributed according to energy-dispersive spectroscopy data. Electron paramagnetic resonance (EPR) data verified stable paramagnetic borate anions, indicating successful BO33- substitution for phosphate groups. The microstructural properties of 0.3B-TCP ceramic were assessed before and after soaking in a saline solution. Its bending strength was approximately 30 MPa, and its porosity was about 33%. 0.3B-TCP ceramic demonstrated significant antimicrobial efficacy against various bacterial strains and a fungus. Cytotoxicity evaluation using equine adipose tissue-derived mesenchymal stem cells and osteogenic differentiation assessment were conducted. The combination of antibacterial efficacy and good cytocompatibility suggests 0.3B-TCP ceramic as a promising bone substitute material.

3.
PLoS Pathog ; 20(2): e1012001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330058

RESUMEN

Cells are unceasingly confronted by oxidative stresses that oxidize proteins on their cysteines. The thioredoxin (Trx) system, which is a ubiquitous system for thiol and protein repair, is composed of a thioredoxin (TrxA) and a thioredoxin reductase (TrxB). TrxAs reduce disulfide bonds of oxidized proteins and are then usually recycled by a single pleiotropic NAD(P)H-dependent TrxB (NTR). In this work, we first analyzed the composition of Trx systems across Bacteria. Most bacteria have only one NTR, but organisms in some Phyla have several TrxBs. In Firmicutes, multiple TrxBs are observed only in Clostridia, with another peculiarity being the existence of ferredoxin-dependent TrxBs. We used Clostridioides difficile, a pathogenic sporulating anaerobic Firmicutes, as a model to investigate the biological relevance of TrxB multiplicity. Three TrxAs and three TrxBs are present in the 630Δerm strain. We showed that two systems are involved in the response to infection-related stresses, allowing the survival of vegetative cells exposed to oxygen, inflammation-related molecules and bile salts. A fourth TrxB copy present in some strains also contributes to the stress-response arsenal. One of the conserved stress-response Trx system was found to be present both in vegetative cells and in the spores and is under a dual transcriptional control by vegetative cell and sporulation sigma factors. This Trx system contributes to spore survival to hypochlorite and ensure proper germination in the presence of oxygen. Finally, we found that the third Trx system contributes to sporulation through the recycling of the glycine-reductase, a Stickland pathway enzyme that allows the consumption of glycine and contributes to sporulation. Altogether, we showed that Trx systems are produced under the control of various regulatory signals and respond to different regulatory networks. The multiplicity of Trx systems and the diversity of TrxBs most likely meet specific needs of Clostridia in adaptation to strong stress exposure, sporulation and Stickland pathways.


Asunto(s)
Bacterias , Reductasa de Tiorredoxina-Disulfuro , Bacterias/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo , Firmicutes/metabolismo , Oxígeno , Glicina
4.
Syst Biol ; 72(6): 1387-1402, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37703335

RESUMEN

Multi-type birth-death (MTBD) models are phylodynamic analogies of compartmental models in classical epidemiology. They serve to infer such epidemiological parameters as the average number of secondary infections Re and the infectious time from a phylogenetic tree (a genealogy of pathogen sequences). The representatives of this model family focus on various aspects of pathogen epidemics. For instance, the birth-death exposed-infectious (BDEI) model describes the transmission of pathogens featuring an incubation period (when there is a delay between the moment of infection and becoming infectious, as for Ebola and SARS-CoV-2), and permits its estimation along with other parameters. With constantly growing sequencing data, MTBD models should be extremely useful for unravelling information on pathogen epidemics. However, existing implementations of these models in a phylodynamic framework have not yet caught up with the sequencing speed. Computing time and numerical instability issues limit their applicability to medium data sets (≤ 500 samples), while the accuracy of estimations should increase with more data. We propose a new highly parallelizable formulation of ordinary differential equations for MTBD models. We also extend them to forests to represent situations when a (sub-)epidemic started from several cases (e.g., multiple introductions to a country). We implemented it for the BDEI model in a maximum likelihood framework using a combination of numerical analysis methods for efficient equation resolution. Our implementation estimates epidemiological parameter values and their confidence intervals in two minutes on a phylogenetic tree of 10,000 samples. Comparison to the existing implementations on simulated data shows that it is not only much faster but also more accurate. An application of our tool to the 2014 Ebola epidemic in Sierra-Leone is also convincing, with very fast calculation and precise estimates. As MTBD models are closely related to Cladogenetic State Speciation and Extinction (ClaSSE)-like models, our findings could also be easily transferred to the macroevolution domain.


Asunto(s)
Epidemias , Fiebre Hemorrágica Ebola , Humanos , Filogenia , Fiebre Hemorrágica Ebola/epidemiología , Funciones de Verosimilitud , Modelos Epidemiológicos
5.
Nat Commun ; 14(1): 4247, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460566

RESUMEN

Despite the rapid growth in viral genome sequencing, statistical methods face challenges in handling historical viral endemic diseases with large amounts of underutilized partial sequence data. We propose a phylogenetic pipeline that harnesses both full and partial viral genome sequences to investigate historical pathogen spread between countries. Its application to rabies virus (RABV) yields precise dating and confident estimates of its geographic dispersal. By using full genomes and partial sequences, we reduce both geographic and genetic biases that often hinder studies that focus on specific genes. Our pipeline reveals an emergence of the present canine-mediated RABV between years 1301 and 1403 and reveals regional introductions over a 700-year period. This geographic reconstruction enables us to locate episodes of human-mediated introductions of RABV and examine the role that European colonization played in its spread. Our approach enables phylogeographic analysis of large and genetically diverse data sets for many viral pathogens.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Perros , Humanos , Virus de la Rabia/genética , Filogenia , Rabia/epidemiología , Rabia/veterinaria , Filogeografía , Genoma Viral/genética
6.
Viruses ; 15(6)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37376544

RESUMEN

A deeper understanding of HIV-1 transmission and drug resistance mechanisms can lead to improvements in current treatment policies. However, the rates at which HIV-1 drug resistance mutations (DRMs) are acquired and which transmitted DRMs persist are multi-factorial and vary considerably between different mutations. We develop a method for the estimation of drug resistance acquisition and transmission patterns. The method uses maximum likelihood ancestral character reconstruction informed by treatment roll-out dates and allows for the analysis of very large datasets. We apply our method to transmission trees reconstructed on the data obtained from the UK HIV Drug Resistance Database to make predictions for known DRMs. Our results show important differences between DRMs, in particular between polymorphic and non-polymorphic DRMs and between the B and C subtypes. Our estimates of reversion times, based on a very large number of sequences, are compatible but more accurate than those already available in the literature, with narrower confidence intervals. We consistently find that large resistance clusters are associated with polymorphic DRMs and DRMs with long loss times, which require special surveillance. As in other high-income countries (e.g., Switzerland), the prevalence of sequences with DRMs is decreasing, but among these, the fraction of transmitted resistance is clearly increasing compared to the fraction of acquired resistance mutations. All this indicates that efforts to monitor these mutations and the emergence of resistance clusters in the population must be maintained in the long term.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , VIH-1/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Farmacorresistencia Viral/genética , Genotipo , Mutación , Reino Unido/epidemiología , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico
7.
Magn Reson Chem ; 61(7): 427-434, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37118918

RESUMEN

Electron paramagnetic resonance (EPR) spectroscopy was applied to study structure-performance relationships for copper-containing catalysts based on Al-Zr-Ce mixed oxides with various oxide support synthesis temperature. In situ EPR showed that the state of Cu2+ sites depends on the phase composition of the support, temperature, as well as the presence of the reaction medium during catalysis.

8.
Virus Evol ; 8(1): veac029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478717

RESUMEN

The Zika virus (ZIKV) disease caused a public health emergency of international concern that started in February 2016. The overall number of ZIKV-related cases increased until November 2016, after which it declined sharply. While the evaluation of the potential risk and impact of future arbovirus epidemics remains challenging, intensified surveillance efforts along with a scale-up of ZIKV whole-genome sequencing provide an opportunity to understand the patterns of genetic diversity, evolution, and spread of ZIKV. However, a classification system that reflects the true extent of ZIKV genetic variation is lacking. Our objective was to characterize ZIKV genetic diversity and phylodynamics, identify genomic footprints of differentiation patterns, and propose a dynamic classification system that reflects its divergence levels. We analysed a curated dataset of 762 publicly available sequences spanning the full-length coding region of ZIKV from across its geographical span and collected between 1947 and 2021. The definition of genetic groups was based on comprehensive evolutionary dynamics analyses, which included recombination and phylogenetic analyses, within- and between-group pairwise genetic distances comparison, detection of selective pressure, and clustering analyses. Evidence for potential recombination events was detected in a few sequences. However, we argue that these events are likely due to sequencing errors as proposed in previous studies. There was evidence of strong purifying selection, widespread across the genome, as also detected for other arboviruses. A total of 50 sites showed evidence of positive selection, and for a few of these sites, there was amino acid (AA) differentiation between genetic clusters. Two main genetic clusters were defined, ZA and ZB, which correspond to the already characterized 'African' and 'Asian' genotypes, respectively. Within ZB, two subgroups, ZB.1 and ZB.2, represent the Asiatic and the American (and Oceania) lineages, respectively. ZB.1 is further subdivided into ZB.1.0 (a basal Malaysia sequence sampled in the 1960s and a recent Indian sequence), ZB.1.1 (South-Eastern Asia, Southern Asia, and Micronesia sequences), and ZB.1.2 (very similar sequences from the outbreak in Singapore). ZB.2 is subdivided into ZB.2.0 (basal American sequences and the sequences from French Polynesia, the putative origin of South America introduction), ZB.2.1 (Central America), and ZB.2.2 (Caribbean and North America). This classification system does not use geographical references and is flexible to accommodate potential future lineages. It will be a helpful tool for studies that involve analyses of ZIKV genomic variation and its association with pathogenicity and serve as a starting point for the public health surveillance and response to on-going and future epidemics and to outbreaks that lead to the emergence of new variants.

9.
J Adv Pharm Technol Res ; 13(1): 30-37, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223438

RESUMEN

Metered-dose nasal sprays (MDNS) are the most widely used for treating rhinitis. Medicinal preparations in the pharmaceutical market vary in their characteristics. To identify the most effective drug, it is necessary to compare the preparations regarding various parameters. The purpose of the research was to compare oxymetazoline MDNS of different brands regarding their dispersion qualities. To that end, nine oxymetazoline sprays available in the Russian market were chosen and analyzed considering their dynamic characteristics and the spraying dispersion composition. The research was conducted with the shadow photography method, the selection of which was justified by its simplicity, the possibilities for detecting the spray jet composition, the process of its formation in dynamics, and the possibility for measuring droplets of all forms. Momentary images of spray activation phases, as well as an averaged image of 100 shots of the spraying main phase, were obtained. According to a range of characteristics, such as spraying duration, a cone angle and cone structure, all the preparations were grouped into three categories. It was found out that the sprays from Group 2 had the best dynamic rates of dispersion, with Vicks Sinex having the best results. Regarding the distribution of particles of different size, the most optimal composition was found for the drugs from Group 2, particularly, Vicks Sinex and Afrin preparations. Hence, Vicks Sinex spraying regimen and microsprayer design were found the most effective for delivering the medicinal substance to the destination.

10.
PLoS Pathog ; 18(1): e1010224, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34990490

RESUMEN

[This corrects the article DOI: 10.1371/journal.ppat.1009786.].

11.
Clin Microbiol Infect ; 28(2): 298.e9-298.e15, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34627988

RESUMEN

OBJECTIVES: In early January 2021 an outbreak of nosocomial cases of coronavirus disease 2019 (COVID-19) emerged in Western France; RT-PCR tests were repeatedly negative on nasopharyngeal samples but positive on lower respiratory tract samples. Whole-genome sequencing (WGS) revealed a new variant, currently defining a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.616. In March, the WHO classified this as a 'variant under investigation' (VUI). We analysed the characteristics and outcomes of COVID-19 cases related to this new variant. METHODS: Clinical, virological, and radiological data were retrospectively collected from medical charts in the two hospitals involved. We enrolled those inpatients with: (a) positive SARS-CoV-2 RT-PCR on a respiratory sample, (b) seroconversion with anti-SARS-CoV-2 IgG/IgM, or (c) suggestive symptoms and typical features of COVID-19 on a chest CT scan. Cases were categorized as B.1.616, a variant of concern (VOC), or unknown. RESULTS: From 1st January to 24th March 2021, 114 patients fulfilled the inclusion criteria: B.1.616 (n = 39), VOC (n = 32), and unknown (n = 43). B.1.616-related cases were older than VOC-related cases (81 years, interquartile range (IQR) 73-88 versus 73 years, IQR 67-82, p < 0.05) and their first RT-PCR tests were rarely positive (6/39, 15% versus 31/32, 97%, p < 0.05). The B.1.616 variant was independently associated with severe disease (multivariable Cox model HR 4.0, 95%CI 1.5-10.9) and increased lethality (28-day mortality 18/39 (46%) for B.1.616 versus 5/32 (16%) for VOC, p = 0.006). CONCLUSION: We report a nosocomial outbreak of COVID-19 cases related to a new variant, B.1.616, which is poorly detected by RT-PCR on nasopharyngeal samples and is associated with high lethality.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/virología , Francia/epidemiología , Humanos , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Curr Opin Virol ; 51: 56-64, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34597873

RESUMEN

Drug resistance mutations appear in HIV under treatment pressure. Resistant variants can be transmitted to treatment-naive individuals, which can lead to rapid virological failure and can limit treatment options. Consequently, quantifying the prevalence, emergence and transmission of drug resistance is critical to effectively treating patients and to shape health policies. We review recent bioinformatics developments and in particular describe: (1) the machine learning approaches intended to predict and explain the level of resistance of HIV variants from their sequence data; (2) the phylogenetic methods used to survey the emergence and dynamics of resistant HIV transmission clusters; (3) the impact of deep sequencing in studying within-host and between-host genetic diversity of HIV variants, notably regarding minority resistant variants.


Asunto(s)
Biología Computacional , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH/efectos de los fármacos , VIH/genética , Mutación , VIH/clasificación , Humanos , Filogenia
13.
Virus Evol ; 7(2): veab055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34532059

RESUMEN

Understanding of pandemics depends on the characterization of pathogen collections from well-defined and demographically diverse cohorts. Since its emergence in Congo almost a century ago, Human Immunodeficiency Virus Type 1 (HIV-1) has geographically spread and genetically diversified into distinct viral subtypes. Phylogenetic analysis can be used to reconstruct the ancestry of the virus to better understand the origin and distribution of subtypes. We sequenced two 3.6-kb amplicons of HIV-1 genomes from 3,197 participants in a clinical trial with consistent and uniform sampling at sites across 35 countries and analyzed our data with another 2,632 genomes that comprehensively reflect the HIV-1 genetic diversity. We used maximum likelihood phylogenetic analysis coupled with geographical information to infer the state of ancestors. The majority of our sequenced genomes (n = 2,501) were either pure subtypes (A-D, F, and G) or CRF01_AE. The diversity and distribution of subtypes across geographical regions differed; USA showed the most homogenous subtype population, whereas African samples were most diverse. We delineated transmission of the four most prevalent subtypes in our dataset (A, B, C, and CRF01_AE), and our results suggest both continuous and frequent transmission of HIV-1 over country borders, as well as single transmission events being the seed of endemic population expansions. Overall, we show that coupling of genetic and geographical information of HIV-1 can be used to understand the origin and spread of pandemic pathogens.

14.
PLoS Pathog ; 17(8): e1009786, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34370795

RESUMEN

CRF19 is a recombinant form of HIV-1 subtypes D, A1 and G, which was first sampled in Cuba in 1999, but was already present there in 1980s. CRF19 was reported almost uniquely in Cuba, where it accounts for ∼25% of new HIV-positive patients and causes rapid progression to AIDS (∼3 years). We analyzed a large data set comprising ∼350 pol and env sequences sampled in Cuba over the last 15 years and ∼350 from Los Alamos database. This data set contained both CRF19 (∼315), and A1, D and G sequences. We performed and combined analyses for the three A1, G and D regions, using fast maximum likelihood approaches, including: (1) phylogeny reconstruction, (2) spatio-temporal analysis of the virus spread, and ancestral character reconstruction for (3) transmission mode and (4) drug resistance mutations (DRMs). We verified these results with a Bayesian approach. This allowed us to acquire new insights on the CRF19 origin and transmission patterns. We showed that CRF19 recombined between 1966 and 1977, most likely in Cuban community stationed in Congo region. We further investigated CRF19 spread on the Cuban province level, and discovered that the epidemic started in 1970s, most probably in Villa Clara, that it was at first carried by heterosexual transmissions, and then quickly spread in the 1980s within the "men having sex with men" (MSM) community, with multiple transmissions back to heterosexuals. The analysis of the transmission patterns of common DRMs found very few resistance transmission clusters. Our results show a very early introduction of CRF19 in Cuba, which could explain its local epidemiological success. Ignited by a major founder event, the epidemic then followed a similar pattern as other subtypes and CRFs in Cuba. The reason for the short time to AIDS remains to be understood and requires specific surveillance, in Cuba and elsewhere.


Asunto(s)
Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Variación Genética , Infecciones por VIH/epidemiología , VIH-1/clasificación , Filogenia , Teorema de Bayes , Cuba/epidemiología , Femenino , Infecciones por VIH/transmisión , Infecciones por VIH/virología , VIH-1/genética , VIH-1/fisiología , Humanos , Masculino
15.
Lancet Reg Health West Pac ; 11: 100163, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34327365

RESUMEN

BACKGROUND: In 2016-2017, 68 women in Southern Vietnam had RT-PCR confirmed Zika virus (ZIKV) infection during pregnancy. We report here the outcomes of the pregnancies and the virological analyses related to this outbreak. METHODS: We collected clinical and epidemiological information from the women who were enrolled in the study. Medical records related to the pregnancy in 2016-2017 were retrieved for those who were not able to be enrolled in the study. Children born to women with ZIKV infection during pregnancy were also enrolled. Serum samples were evaluated for presence of ZIKV antibodies. Phylogenetic analyses were performed on Zika virus genomes sequenced from the 2016-2017 serum samples. FINDINGS: Of the 68 pregnancies, 58 were livebirths and 10 were medically terminated. Four of the medical records from cases of fetal demise were able to be retrieved, of which one was consistent with congenital ZIKV infection. Of the 58 women with a livebirth, 21 participated in the follow-up investigation. All but two women had serologic evidence of ZIKV infection. Of the 21 children included in the study (mean age: 30.3 months), 3 had microcephaly at birth. No other clinical abnormalities were reported and no differences in neurodevelopment were observed compared to a control group. Phylogenetic analysis revealed a clade within the ZIKV Asian lineage and branch at the root of samples from the 2013-2014 French Polynesian outbreak. The prM S139N mutation was not observed. INTERPRETATION: We have been able to demonstrate a clade within the ZIKV Asian lineage implicated in adverse pregnancy outcomes in Southern Vietnam. FUNDING: INCEPTION project (PIA/ANR-16-CONV-0005) and a grant received from BNP Paribas Simplidon.

16.
C R Biol ; 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33274614

RESUMEN

SARS-CoV-2 is the virus responsible for the global COVID19 pandemic. We review what is known about the origin of this virus, detected in China at the end of December 2019. The genome of this virus mainly evolves under the effect of point mutations. These are generally neutral and have no impact on virulence and severity, but some appear to influence infectivity, notably the D614G mutation of the Spike protein. To date (30/09/2020) no recombination of the virus has been documented in the human host, and very few insertions and deletions. The worldwide spread of the virus was the subject of controversies that we summarize, before proposing a new approach free from the limitations of previous methods. The results show a complex scenario with, for example, numerous introductions to the USA and returns of the virus from the USA to certain countries including France.


Le SARS-CoV-2 est le virus responsable de la pandémie mondiale de COVID19. On dresse ici un bilan de ce qui est connu sur l'origine de ce virus, détecté en Chine fin décembre 2019. Le génome de ce virus évolue sous l'effet de mutations ponctuelles. Celles-ci sont généralement neutres et sans impact sur la virulence et la sévérité, mais certaines semblent influer sur l'infectiosité, notamment la mutation D614G de la protéine Spike. A l'inverse, on n'a à ce jour (30/09/2020) documenté aucune recombinaison du virus chez l'hôte humain, et très peu d'insertions et de délétions. La propagation mondiale du virus a fait l'objet de polémiques sur lesquelles nous revenons, avant de proposer une nouvelle approche débarrassée des limites des méthodes précédentes. Les résultats montrent une propagation complexe avec, par exemple, de très nombreuses introductions aux USA et des retours du virus depuis les USA vers certains pays dont la France.

17.
bioRxiv ; 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33173870

RESUMEN

Although the global response to COVID-19 has not been entirely unified, the opportunity arises to assess the impact of regional public health interventions and to classify strategies according to their outcome. Analysis of genetic sequence data gathered over the course of the pandemic allows us to link the dynamics associated with networks of connected individuals with specific interventions. In this study, clusters of transmission were inferred from a phylogenetic tree representing the relationships of patient sequences sampled from December 30, 2019 to April 17, 2020. Metadata comprising sampling time and location were used to define the global behavior of transmission over this earlier sampling period, but also the involvement of individual regions in transmission cluster dynamics. Results demonstrate a positive impact of international travel restrictions and nationwide lockdowns on global cluster dynamics. However, residual, localized clusters displayed a wide range of estimated initial secondary infection rates, for which uniform public health interventions are unlikely to have sustainable effects. Our findings highlight the presence of so-called "super-spreaders", with the propensity to infect a larger-than-average number of people, in countries, such as the USA, for which additional mitigation efforts targeting events surrounding this type of spread are urgently needed to curb further dissemination of SARS-CoV-2.

18.
Nat Commun ; 11(1): 5347, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093464

RESUMEN

In 1970, the seventh pandemic of cholera (7 P) reached both Africa and Europe. Between 1970 and 2011, several European countries reported cholera outbreaks of a few to more than 2,000 cases. We report here a whole-genome analysis of 1,324 7 P V. cholerae El Tor (7 PET) isolates, including 172 from autochthonous sporadic or outbreak cholera cases occurring between 1970 and 2011 in Europe, providing insight into the spatial and temporal spread of this pathogen across Europe. In this work, we show that the 7 PET lineage was introduced at least eight times into two main regions: Eastern and Southern Europe. Greater recurrence of the disease was observed in Eastern Europe, where it persisted until 2011. It was introduced into this region from Southern Asia, often circulating regionally in the countries bordering the Black Sea, and in the Middle East before reaching Eastern Africa on several occasions. In Southern Europe, the disease was mostly seen in individual countries during the 1970s and was imported from North and West Africa, except in 1994, when cholera was imported into Albania and Italy from the Black Sea region. These results shed light on the geographic course of cholera during the seventh pandemic and highlight the role of humans in its global dissemination.


Asunto(s)
Cólera/historia , Pandemias/historia , Cólera/epidemiología , Cólera/microbiología , Farmacorresistencia Bacteriana/genética , Europa (Continente)/epidemiología , Evolución Molecular , Genoma Bacteriano , Genómica , Historia del Siglo XX , Historia del Siglo XXI , Migración Humana/historia , Humanos , Filogenia , Ribotipificación , Análisis Espacio-Temporal , Vibrio cholerae/clasificación , Vibrio cholerae/genética , Vibrio cholerae/aislamiento & purificación
19.
Mol Biol Evol ; 36(9): 2069-2085, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127303

RESUMEN

The reconstruction of ancestral scenarios is widely used to study the evolution of characters along phylogenetic trees. One commonly uses the marginal posterior probabilities of the character states, or the joint reconstruction of the most likely scenario. However, marginal reconstructions provide users with state probabilities, which are difficult to interpret and visualize, whereas joint reconstructions select a unique state for every tree node and thus do not reflect the uncertainty of inferences. We propose a simple and fast approach, which is in between these two extremes. We use decision-theory concepts (namely, the Brier score) to associate each node in the tree to a set of likely states. A unique state is predicted in tree regions with low uncertainty, whereas several states are predicted in uncertain regions, typically around the tree root. To visualize the results, we cluster the neighboring nodes associated with the same states and use graph visualization tools. The method is implemented in the PastML program and web server. The results on simulated data demonstrate the accuracy and robustness of the approach. PastML was applied to the phylogeography of Dengue serotype 2 (DENV2), and the evolution of drug resistances in a large HIV data set. These analyses took a few minutes and provided convincing results. PastML retrieved the main transmission routes of human DENV2 and showed the uncertainty of the human-sylvatic DENV2 geographic origin. With HIV, the results show that resistance mutations mostly emerge independently under treatment pressure, but resistance clusters are found, corresponding to transmissions among untreated patients.


Asunto(s)
Biología Computacional/métodos , Filogenia , Programas Informáticos , Teoría de las Decisiones , Virus del Dengue/genética , VIH/genética
20.
J Infect Dis ; 216(suppl_9): S820-S823, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029155

RESUMEN

Drug resistance mutations emerge in genetic sequences of HIV through drug-selective pressure. Drug resistance can be transmitted. In this review we discuss phylogenetic methods used to study the emergence of drug resistance and the spread of resistant viruses.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/epidemiología , VIH/genética , Farmacorresistencia Viral/genética , VIH/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Mutación/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA