Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(8): 13918-13931, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859350

RESUMEN

Laser-scanning confocal hyperspectral microscopy is a powerful technique to identify the different sample constituents and their spatial distribution in three-dimensional (3D). However, it suffers from low imaging speed because of the mechanical scanning methods. To overcome this challenge, we propose a snapshot hyperspectral confocal microscopy imaging system (SHCMS). It combined coded illumination microscopy based on a digital micromirror device (DMD) with a snapshot hyperspectral confocal neural network (SHCNet) to realize single-shot confocal hyperspectral imaging. With SHCMS, high-contrast 160-bands confocal hyperspectral images of potato tuber autofluorescence can be collected by only single-shot, which is almost 5 times improvement in the number of spectral channels than previously reported methods. Moreover, our approach can efficiently record hyperspectral volumetric imaging due to the optical sectioning capability. This fast high-resolution hyperspectral imaging method may pave the way for real-time highly multiplexed biological imaging.

2.
Materials (Basel) ; 16(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36984150

RESUMEN

Using ternary molten salt with a molar ratio of NaCl:KCl:CsCl = 30:24.5:45.5 and ZrCl4 as raw materials to prepare a NaCl-KCl-CsCl-Cs2ZrCl6 composite electrolyte. Characterizing by XRD, ICP-AES, optical microscopy and SEM-EDS, the results showed that when the molar ratio of CsCl:ZrCl4 ≥ 2:1, Cs2ZrCl6 was generated according to the stoichiometric reaction; when the molar ratio of CsCl:ZrCl4 < 2:1, CsCl in molten salt was almost completely converted to Cs2ZrCl6, and there was a ZrCl4 phase. When the molar ratio of CsCl:ZrCl4 = 2:1, with the increase of the reaction temperature and reaction time, the concentration of zirconium ions first increased and then decreased. The optimized preparation process conditions are: the 2:1 molar ratio of CsCl to ZrCl4 in NaCl-KCl-CsCl, 500 °C of reaction temperature of and 3 h of reaction time. Under this condition, 99.68% conversion rate from ZrCl4 to Cs2ZrCl6 was obtained. Taking the prepared NaCl-KCl-CsCl-Cs2ZrCl6 composite electrolyte as a raw material, a preliminary study of molten salt electrolytic refining zirconium was carried out, and a refined zirconium product with a dendrite of 10.61 mm was obtained under the conditions of a zirconium ions concentration of 5%, an electrolysis temperature of 750 °C, a current density of 0.1 A/cm2, and an electrolysis time of 9 h, indicating that the composite electrolyte can be used for the electrolytic refining of zirconium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA