Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Prim Care ; 25(1): 237, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965480

RESUMEN

BACKGROUND: In 2010, China launched a rural-oriented tuition-waived medical education (RTME) programme to train more general practitioners (GPs) to meet the needs of the rural health workforce. Motivating and maintaining GPs is an important consideration for the shortage in the rural health workforce. This study aimed to investigate job satisfaction and turnover among the first group of rural-oriented tuition-waived medical students (RTMSs) who had completed a three-year compulsory service in Guangxi, as well as the factors affecting RTMSs turnover. METHODS: This study adopted a mixed-method approach. A quantitative survey of 129 RTMSs was analysed (81.6% response rate), and qualitative interviews were conducted with 30 stakeholders, including 18 RTMSs, six administrators of the County Health Bureau, and six administrators of township health centers (THCs). A t-test, chi-square test, Fisher's exact test, and logistic regression analysis were used to examine the quantitative data, and thematic analysis was used to analyse the qualitative data. RESULTS: Among the 129 participants, the turnover rate was high, with 103 RTMSs reporting turnover (79.84%). Interpersonal relationships scored the highest in job satisfaction (3.63 ± 0.64) among RTMSs, while working conditions were rated the lowest (2.61 ± 0.85). Marital status (odds ratio [OR] = 0.236, 95% confidence interval [95%CI] = 0.059-0.953, P = 0.043), only child status (OR = 8.660, 95%CI = 1.714-43.762, P = 0.009), and job return satisfaction (OR = 0.290, 95%CI = 0.090-0.942, P = 0.039) were significantly associated with turnover. Univariate analyses showed that income had a significant influence on turnover, but the relationship gone by multivariable; however it was deemed important in the qualitative study. Qualitative analysis revealed that turnover was influenced by the working atmosphere, effort-reward imbalance, professional competence, and opportunities for training and promotion. CONCLUSIONS: This study provides insights for the policymakers about the priority areas for retaining GPs in rural locations and provides reference values for the retention of GPs in other regions with a shortage of rural health workers. For RTMSs to continue providing services to rural areas, the government should improve their salaries, balance their income and workload, provide more opportunities for training and career promotion, and managers should recognise their efforts and create an optimistic working atmosphere.


Asunto(s)
Satisfacción en el Trabajo , Reorganización del Personal , Servicios de Salud Rural , Estudiantes de Medicina , Humanos , Masculino , Femenino , China , Estudiantes de Medicina/psicología , Estudiantes de Medicina/estadística & datos numéricos , Reorganización del Personal/estadística & datos numéricos , Adulto , Adulto Joven , Médicos Generales/provisión & distribución , Médicos Generales/psicología , Encuestas y Cuestionarios
2.
J Hazard Mater ; 476: 135212, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39024764

RESUMEN

Excessive environmental exposure to manganese (Mn) has been linked to cognitive impairments, circular RNAs (circRNAs) have been recognized for their roles in epigenetic regulation in various biological processes, including neurological pathogenesis. Previous studies found that ferroptosis, an iron ion-dependent programmed cell death, may be involved in cognitive impairments. However, specific mechanisms underlying the relationship among circRNA, ferroptosis, and neurotoxicity of Mn are not well-understood. In the current study, RNA sequencing was performed to profile RNA expression in Neuro-2a (N2a) cells that were treated with 300 µM Mn. The potential molecular mechanisms of circHmbox1(3,4) in Mn-induced cognitive impairments were investigated via various experiments, such as Western blot and intracerebroventricular injection in mice. We observed a significant decrease in the expression of circHmbox1(3,4) both in vitro and in vivo following Mn treatment. The results of Y maze test and Morris water maze test demonstrated an improvement in learning and memory abilities following circHmbox1(3,4) overexpression in Mn treated mice. Mn treatment may reduce circHmbox1(3,4) biogenesis through lowered expression of E2F1/QKI. Inhibiting circHmbox1(3,4) expression led to GPX4 protein degradation through protein ligation and ubiquitination. Overall, the current study showed that Mn exposure-induced cognitive dysfunction may be mediated through ferroptosis regulated by circHmbox1(3,4).

3.
Int J Behav Nutr Phys Act ; 21(1): 53, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735934

RESUMEN

BACKGROUND: Regulatory actions are increasingly used to tackle issues such as excessive alcohol or sugar intake, but such actions to reduce sedentary behaviour remain scarce. World Health Organization (WHO) guidelines on sedentary behaviour call for system-wide policies. The Chinese government introduced the world's first nation-wide multi-setting regulation on multiple types of sedentary behaviour in children and adolescents in July 2021. This regulation restricts when (and for how long) online gaming businesses can provide access to pupils; the amount of homework teachers can assign to pupils according to their year groups; and when tutoring businesses can provide lessons to pupils. We evaluated the effect of this regulation on sedentary behaviour safeguarding pupils. METHODS: With a natural experiment evaluation design, we used representative surveillance data from 9- to 18-year-old pupils before and after the introduction of the regulation, for longitudinal (n = 7,054, matched individuals, primary analysis) and repeated cross-sectional (n = 99,947, exploratory analysis) analyses. We analysed pre-post differences for self-reported sedentary behaviour outcomes (total sedentary behaviour time, screen viewing time, electronic device use time, homework time, and out-of-campus learning time) using multilevel models, and explored differences by sex, education stage, residency, and baseline weight status. RESULTS: Longitudinal analyses indicated that pupils had reduced their mean total daily sedentary behaviour time by 13.8% (95% confidence interval [CI]: -15.9 to -11.7%, approximately 46 min) and were 1.20 times as likely to meet international daily screen time recommendations (95% CI: 1.01 to 1.32) one month after the introduction of the regulation compared to the reference group (before its introduction). They were on average 2.79 times as likely to meet the regulatory requirement on homework time (95% CI: 2.47 to 3.14) than the reference group and reduced their daily total screen-viewing time by 6.4% (95% CI: -9.6 to -3.3%, approximately 10 min). The positive effects were more pronounced among high-risk groups (secondary school and urban pupils who generally spend more time in sedentary behaviour) than in low-risk groups (primary school and rural pupils who generally spend less time in sedentary behaviour). The exploratory analyses showed comparable findings. CONCLUSIONS: This regulatory intervention has been effective in reducing total and specific types of sedentary behaviour among Chinese children and adolescents, with the potential to reduce health inequalities. International researchers and policy makers may explore the feasibility and acceptability of implementing regulatory interventions on sedentary behaviour elsewhere.


Asunto(s)
Conducta Sedentaria , Humanos , Adolescente , Masculino , Femenino , Niño , China , Estudios Transversales , Tiempo de Pantalla , Juegos de Video , Promoción de la Salud/métodos , Conducta del Adolescente , Estudios Longitudinales , Ejercicio Físico , Estudiantes , Conducta Infantil/psicología , Instituciones Académicas
4.
Ecotoxicol Environ Saf ; 277: 116365, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657452

RESUMEN

Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1ß, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Epigénesis Genética , Hipocampo , Plomo , Manganeso , Trastornos de la Memoria , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones , Epigénesis Genética/efectos de los fármacos , Manganeso/toxicidad , Plomo/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Trastornos de la Memoria/inducido químicamente , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína Fosfatasa 2/metabolismo , Aprendizaje/efectos de los fármacos
5.
Environ Int ; 187: 108672, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38648691

RESUMEN

Manganese (Mn) is an essential micronutrient required for various biological processes but excess exposure to Mn can cause neurotoxicity. However, there are few reports regarding the toxicity effect of Mn on the kidney as well as the underlying molecule mechanism. Herein, in vivo experiments were adopted to assess the toxicity effects associated with Mn, and found that chronic Mn treatment induced the injury of glomerular podocytes but not renal tubule in rats. Genome-wide CRISPR/Cas9 knockout screen was then employed to explore the biotargets of the toxic effect of Mn on podocytes. Through functional analyses of the enriched candidate genes, NLRP10 was found to be significantly up-regulated and mediated Mn-induced podocyte apoptosis. Further mechanism investigation revealed that NLRP10 expression was regulated by demethylase AlkB homolog 5 (ALKBH5) in an m6A-dependent fashion upon Mn treatment. Moreover, Mn could directly bind to Metadherin (MTDH) and promoted its combination with ALKBH5 to promote NLRP10 expression and cell apoptosis. Finally, logistic regressions, restricted cubic spline regressions and uniform cubic B-spline were used to investigate the association between Mn exposure and the risk of chronic kidney disease (CKD). A U-shaped nonlinear relationship between CKD risk and plasma Mn level, and a positive linear relationship between CKD risk and urinary Mn levels was found in our case-control study. To sum up, our findings illustrated that m6A-dependent NLRP10 regulation is indispensable for podocyte apoptosis and nephrotoxicity induced by Mn, providing fresh insight into understanding the health risk of Mn and a novel target for preventing renal injury in Mn-intoxicated patients.


Asunto(s)
Manganeso , Proteínas de la Membrana , Podocitos , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Animales , Ratas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Manganeso/toxicidad , Insuficiencia Renal Crónica/inducido químicamente , Humanos , Masculino , Apoptosis/efectos de los fármacos , Ratas Sprague-Dawley , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
6.
Ann Neurol ; 96(1): 87-98, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661228

RESUMEN

OBJECTIVE: Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS: Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS: The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION: Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024;96:87-98.


Asunto(s)
Cognición , Metilación de ADN , Epigenoma , Análisis de Mediación , Metales Pesados , Humanos , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Femenino , Masculino , Metales Pesados/sangre , Anciano , Cognición/efectos de los fármacos , Epigenoma/genética , Proyectos Piloto , Arsénico/sangre , Arsénico/toxicidad , Estudio de Asociación del Genoma Completo , Persona de Mediana Edad , Disfunción Cognitiva/genética , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/sangre , Anciano de 80 o más Años , Pruebas de Estado Mental y Demencia
7.
Environ Pollut ; 344: 123395, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266697

RESUMEN

Overexposure to manganese (Mn) can lead to neurotoxicity, the underlying mechanisms remain incompletely understood. Circular RNAs (circRNAs) have emerged as important regulators in various biological processes. It is plausible that circRNAs may be involved in the biological mechanisms underlying Mn caused neurotoxicity. Here, circRest was downregulated in Mn-exposed mouse neuroblastoma cells (N2a cells) by RNA sequencing and quantitative real-time PCR. When circRest was overexpressed, it led to an increase in cell viability and a decrease in apoptosis following Mn exposure. Conversely, silencing circRest resulted in opposite effects in N2a cells. Further investigation revealed that circRest acts as a mmu-miR-6914-5p sponge, and mmu-miR-6914-5p could bind and inhibit Ephb3, thereby promoting apoptosis in N2a cells. This was confirmed through RNA antisense purification and dual luciferase reporter assays. Additionally, the circRest/mmu-miR-6914-5p/Ephb3 axis may influence memory and learning in mice following Mn exposure. In conclusion, our study uncovers a novel mechanism by which circRest may attenuate Mn caused neurotoxicity via the mmu-miR-6914-5p/Ephb3 axis.


Asunto(s)
MicroARNs , ARN Circular , Animales , Ratones , Apoptosis , Secuencia de Bases , Proliferación Celular , Manganeso , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética
8.
Food Chem Toxicol ; 184: 114322, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056821

RESUMEN

Manganese (Mn) is an essential micronutrient in maintaining homeostasis in the human body, while excessive Mn exposure can lead to neurological disorders. To investigate whether there is an association between elevated ROS and pyroptosis caused by Mn exposure using both in vitro and in vivo models. We exposed BV2 and N2a, which represent microglial cells and Neuroblastoma cells in the brain, respectively, to different concentrations of Mn for 24 h. Following Mn exposure, we assessed cell morphology, levels of lactate dehydrogenase, and cellular ROS levels. C57BL/6 male mice were exposed to 0-100 mg/kg MnCl2·4H2O for 12 weeks through gavage. The expression level of pyroptosis proteins including caspase3 and GSDME in the hippocampus was examined. We found that Mn exposure resulted in elevated levels of cellular ROS and protein expression of Caspase3 and GSDME in both N2a and BV2 cells. The pyroptosis levels were blunted by either inhibiting Caspase3 expression or ROS production. In the in vivo model, protein levels of Caspase3 and GSDME also increased dependent of Mn concentrations. These findings suggested that neuronal pyroptosis induced by Mn exposure may occur through the ROS-stimulated Caspase3-GSDME pathway. Moreover, utilizing inhibitors targeting Caspase3 or ROS may provide protection against Mn-induced toxicity.


Asunto(s)
Manganeso , Piroptosis , Ratones , Animales , Masculino , Humanos , Manganeso/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal
9.
Artículo en Inglés | MEDLINE | ID: mdl-37914348

RESUMEN

BACKGROUND: Resistant hypertension (RHTN), a clinically complex condition with profound health implications, necessitates considerable time and allocation of medical resources for effective management. Unraveling the environmental risk factors associated with RHTN may shed light on future interventional targets aimed at reducing its incidence. Exposure to heavy metal has been linked to an increased risk of hypertension, while the relationship with RHTN remains poorly understood. METHODS: Using the 1999-2018 National Health and Nutrition Examination Survey (NHANES) data, we examined the association of blood lead (Pb), cadmium (Cd), and mercury (Hg) with RHTN using a multinomial logistic regression model. The combined effects of the metals and the contribution of each metal were assessed using a weighted quantile sum (WQS) analysis. RESULTS: A total of 38281 participants were included in the analysis. Compared with no resistant hypertension (NRHTN), per 1 µg/dL increase in blood Pb concentration, the proportion of RHTN increased by 16% [adjusted odds ratio (aOR), 1.16; 95% confidence interval (CI) 1.01-1.32]. When analyzed by quartiles (Q), the aOR [95% CI] for Pd was 1.30[1.01,1.67] (Q4 vs. Q1); there was a significant dose-response relationship (p < 0.05). Likewise, as a continuous variable, each 1 µg/dL increase in blood Cd level was associated with a 13% increase in the proportion of RHTN (aOR: 1.13; 95%CI: [1.00,1.27]); when analyzed as quartile, aOR [95% CI] for Cd were 1.30[1.01,1.69] (Q3 vs. Q1), and 1.35[1.03,1.75] (Q4 vs. Q1); the dose-response relationship was significant (p < 0.05). WQS analysis showed a significant combined effects of Pb, Cd, and Hg on RHTN, with Pb as the highest weight (0.64), followed by Cd (0.25) and Hg (0.11). Stratified analysis indicated that the associations for the two heavy metals were significant for participants who were male, ≼ 60 years old, and with kidney dysfunction. CONCLUSION: Findings of this study with national data provide new evidence regarding the role of environmental heavy metal exposure in RHTN. The prevention strategies aimed at reducing heavy metal exposure should particularly focus on Americans who are middle-aged, male, and afflicted with kidney dysfunction.


Asunto(s)
Hipertensión , Mercurio , Metales Pesados , Persona de Mediana Edad , Humanos , Masculino , Adulto , Femenino , Cadmio , Encuestas Nutricionales , Plomo , Hipertensión/inducido químicamente , Hipertensión/epidemiología
10.
Clin Nutr ; 42(12): 2434-2442, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37871484

RESUMEN

BACKGROUND: Hypertensive adults are at a higher risk of cardiovascular morbidity and mortality. Dietary omega-3 polyunsaturated fatty acids (N3-PUFA) intake has been associated with cardiovascular benefits. However, few studies have specifically investigated whether dietary intake of N3-PUFA is associated with lower risk of all-cause and cardiovascular mortality among hypertensive adults in the U.S. METHODS: This prospective cohort study included 26,914 hypertensive individuals 18 years or older who participated in 10 NHANES cycles from 1999 to 2018. Dietary levels of N3-PUFA were obtained from the 24-hour dietary recalls. The dietary data were linked to mortality records from the National Death Index through December 31, 2019. The associations between dietary N3-PUFA levels and mortality were evaluated by constructing the Multivariable Cox Proportional Hazards models. RESULTS: We observed an increasing trend of dietary N3-PUFA intake levels over the years, mainly driven by alpha-linolenic acid (ALA). Lower all-cause mortality risk was observed among hypertensive adults with higher consumption of total N3-PUFA [adjusted hazards ratio, 95% confidence interval: 0.91 (0.86, 0.97)], plant-based ALA [0.88 (0.83, 0.93)], fish oil-based eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) [0.91 (0.83, 0.99)], EPA [0.93 (0.88, 0.98)], docosapentaenoic acid (DPA) [0.73 (0.58, 0.91)], or DHA [0.95 (0.90, 0.99)]. Hypertensive adults were at lower risk of cardiovascular mortality if their diet contained higher levels of total N3-PUFA [0.68 (0.53, 0.88)], ALA [0.89 (0.80, 0.99)], EPA [0.87 (0.79, 0.97)] or DPA [0.86 (0.78, 0.95)]. Weighted quantile sum analysis showed that ALA, EPA, and DPA were the main contributors of the N3-PUFA benefits against mortality among hypertensive adults. CONCLUSIONS: Dietary intake of N3-PUFA, particularly ALA, EPA, and DPA, was associated with lower risk of all-cause and cardiovascular mortality among U.S. hypertensive adults. These findings suggest that increasing dietary intake of N3-PUFA may serve as a potential strategy to lower hypertension-associated mortality risk.


Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Hipertensión , Adulto , Humanos , Encuestas Nutricionales , Estudios Prospectivos , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Insaturados , Ácido Eicosapentaenoico , Ácidos Docosahexaenoicos , Hipertensión/epidemiología , Enfermedades Cardiovasculares/prevención & control , Ingestión de Alimentos
11.
Environ Sci Pollut Res Int ; 30(48): 105665-105674, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37715904

RESUMEN

Few studies are available on associations between metal mixture exposures and disrupted thyroid hormone homeostasis; particularly, the role of iodine status was ignored. Here, we aimed to explore the cross-sectional relationship of blood cell metals with thyroid homeostasis and explore the potential modifying effect of iodine status. Among 328 workers from the manganese-exposed workers healthy cohort (MEWHC), we detected thyroid function parameters: thyroid stimulating hormone (TSH), total triiodothyronine (TT3), free triiodothyronine (FT3), total tetraiodothyronine (TT4), free tetraiodothyronine (FT4) as well as calculated sum activity of peripheral deiodinases (GD) and thyroid's secretory capacity (GT). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure 22 metal concentrations in blood cells. Based on the consistent results of least absolute shrinkage and selection operator (LASSO) and Bayesian kernel machine regression (BKMR) analyses, there were significant positive associations between copper and TSH (ß = 2.016), iron and FT4 (ß = 0.403), titanium and GD (ß = 0.142), nickel and GD (ß = 0.057), and negative associations between copper and FT4 (ß = - 0.226), selenium and GD (ß = - 0.332), among the participants. Interestingly, we observed an inverted-U shape relationship between magnesium and FT4. Furthermore, we found a synergistic effect between arsenic and copper on the TSH level, while antagonistic effects between nickel and copper as well as nickel and selenium on the TSH level. We observed a modified effect of iodine status on association between strontium and GD (Pinteraction = 0.026). It suggests metal mixture exposures can alter thyroid homeostasis among the occupational population, and deiodinase activity had a modified effect on association between strontium and GD. Validation of these associations and elucidation of underlying mechanisms require further researches in the future.


Asunto(s)
Yodo , Selenio , Humanos , Triyodotironina , Glándula Tiroides , Manganeso , Estudios Transversales , Cobre , Níquel , Teorema de Bayes , Metales , Tirotropina , Estroncio , Tiroxina
12.
Int J Behav Nutr Phys Act ; 20(1): 111, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723534

RESUMEN

BACKGROUND: Group Model Building (GMB) is a participatory system dynamics method increasingly used to address complex public health issues like obesity. GMB represents a set of well-defined steps to engage key stakeholders to identify shared drivers and solutions of a given problem. However, GMB has not yet been applied specifically to develop multi-duty interventions that address multiple inter-related issues such as malnutrition in all its forms (MIAIF). Moreover, a recent systematic review of empirical applications of a systems approach to developing obesity interventions found no published work from non-western, low- and middle-income countries (LMICs). In this paper we describe adaptations and innovations to a common GMB process to co-develop systemic MIAIF interventions with Chinese decision-makers. METHODS: We developed, piloted and implemented multiple cultural adaptations and two methodological innovations to the commonly used GMB process in Fang Cheng Gang city, China. We included formal, ceremonial and policy maker engagement events before and between GMB workshops, and incorporated culturally tailored arrangements during participant recruitment (officials of the same seniority level joined the same workshop) and workshop activities (e.g., use of individual scoring activities and hand boards). We made changes to the commonly used GMB activities which enabled mapping of shared drivers of multiple health issues (in our case MIAIF) in a single causal loop diagram. We developed and used a 'hybrid' GMB format combining online and in person facilitation to reduce travel and associated climate impact. RESULTS: Our innovative GMB process led to high engagement and support from decision-makers representing diverse governmental departments across the whole food systems. We co-identified and prioritised systemic drivers and intervention themes of MIAIF. The city government established an official Local Action Group for long-term, inter-departmental implementation, monitoring and evaluation of the co-developed interventions. The 'hybrid' GMB format enabled great interactions while reducing international travel and mitigating limitations of fully online GMB process. CONCLUSIONS: Cultural and methodological adaptations to the common GMB process for an Asian LMIC setting were successful. The 'hybrid' GMB format is feasible, cost-effective, and more environmentally friendly. These cultural adaptations could be considered for other Asian settings and beyond to address inter-related, complex issues such as MIAIF.


Asunto(s)
Desnutrición , Pueblos del Sudeste Asiático , Humanos , Pueblo Asiatico , China , Desnutrición/epidemiología , Desnutrición/etnología , Desnutrición/prevención & control , Obesidad , Sur de Asia
13.
Environ Sci Pollut Res Int ; 30(37): 87783-87792, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37434053

RESUMEN

Immunoglobulin A nephropathy (IgAN) is the most common type of glomerulonephritis in adults worldwide. Environmental metal exposure has been reported to be involved in the pathogenic mechanisms of kidney diseases, yet no further epidemiological study has been conducted to assess the effects of metal mixture exposure on IgAN risk. In this study, we conducted a matched case‒control design with three controls for each patient to investigate the association between metal mixture exposure and IgAN risk. A total of 160 IgAN patients and 480 healthy controls were matched for age and sex. Plasma levels of arsenic, lead, chromium, manganese, cobalt, copper, zinc, and vanadium were measured using inductively coupled plasma mass spectrometry. We used a conditional logistic regression model to assess the association between individual metals and IgAN risk, and a weighted quantile sum (WQS) regression model to analyze the effects of metal mixtures on IgAN risk. Restricted cubic splines were used to evaluate overall associations between plasma metal concentrations and estimated glomerular filtration rate (eGFR) levels. We observed that except for Cu, all the metals analyzed were nonlinearly associated with decreased eGFR, and higher concentrations of arsenic and lead were associated with elevated IgAN risk in both single-metal [3.29 (1.94, 5.57), 6.10 (3.39, 11.0), respectively] and multiple-metal [3.04 (1.66, 5.57), 4.70 (2.47, 8.97), respectively] models. Elevated manganese [1.76 (1.09, 2.83)] levels were associated with increased IgAN risk in the single-metal model. Copper was inversely related to IgAN risk in both single-metal [0.392 (0.238, 0.645)] and multiple-metal [0.357 (0.200, 0.638)] models. The WQS indices in both positive [2.04 (1.68, 2.47)] and negative [0.717 (0.603, 0.852)] directions were associated with IgAN risk. Lead, arsenic, and vanadium contributed significant weights (0.594, 0.195, and 0.191, respectively) in the positive direction; copper, cobalt, and chromium carried significant weights (0.538, 0.253, and 0.209, respectively). In conclusion, metal exposure was related to IgAN risk. Lead, arsenic, and copper were all significantly weighted factors of IgAN development, which may require further investigation.


Asunto(s)
Exposición a Riesgos Ambientales , Contaminación Ambiental , Glomerulonefritis por IGA , Metales , Adulto , Humanos , Arsénico/metabolismo , Arsénico/toxicidad , Cromo/metabolismo , Cromo/toxicidad , Cobalto/metabolismo , Cobalto/toxicidad , Cobre/metabolismo , Cobre/toxicidad , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Contaminación Ambiental/estadística & datos numéricos , Glomerulonefritis por IGA/inducido químicamente , Manganeso/metabolismo , Manganeso/toxicidad , Metales/metabolismo , Metales/toxicidad , Vanadio/metabolismo , Vanadio/toxicidad , Masculino , Femenino
14.
Thorax ; 78(7): 698-705, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36732083

RESUMEN

BACKGROUND: No prior study has examined the effects of air pollution on the progression from healthy to chronic lung disease, subsequent chronic lung multimorbidity and further to death. METHODS: We used data from the UK Biobank of 265 506 adults free of chronic lung disease at recruitment. Chronic lung multimorbidity was defined as the coexistence of at least two chronic lung diseases, including asthma, chronic obstructive pulmonary disease and lung cancer. The concentrations of air pollutants were estimated using land-use regression models. Multistate models were applied to assess the effect of air pollution on the progression of chronic lung multimorbidity. RESULTS: During a median follow-up of 11.9 years, 13 863 participants developed at least one chronic lung disease, 1055 developed chronic lung multimorbidity and 12 772 died. We observed differential associations of air pollution with different trajectories of chronic lung multimorbidity. Fine particulate matter showed the strongest association with all five transitions, with HRs (95% CI) per 5 µg/m3 increase of 1.31 (1.22 to 1.42) and 1.27 (1.01 to 1.57) for transitions from healthy to incident chronic lung disease and from incident chronic lung disease to chronic lung multimorbidity, and 1.32 (1.21 to 1.45), 1.24 (1.01 to 1.53) and 1.91 (1.14 to 3.20) for mortality risk from healthy, incident chronic lung disease and chronic lung multimorbidity, respectively. CONCLUSION: Our study provides the first evidence that ambient air pollution could affect the progression from free of chronic lung disease to incident chronic lung disease, chronic lung multimorbidity and death.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Estudios de Cohortes , Incidencia , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/etiología
15.
Materials (Basel) ; 16(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36770263

RESUMEN

Highway bridges in coastal areas are seriously affected by the marine environment, while most of the existing test methods for bridge-reinforced concrete beams considering both corrosion and fatigue factors are carried out in an alternating manner, which cannot reflect the actual service conditions of the bridge structure. This paper focuses on an experimental study of the coupled influence of reinforcement corrosion and fatigue loading in reinforced concrete T-shaped beams. A novel loading test device that can realize the corrosion-fatigue coupling effect is designed, and then six reinforced concrete T-shaped beams are fabricated and tested. For the corrosion-fatigue coupling test beams, the variation law of beam cracks, failure modes, steel strain development law, load-deflection relationship, and fatigue life are analyzed and compared with that of the simple fatigue test beams. The test results show that the cracks of the test beam develop continuously with the fatigue loading times under the corrosion-fatigue coupling environment. The fatigue failure modes are all brittle fractures of the main steel bars, which present the shape of uneven oblique section tearing. The new testing device and approach can provide direct insights into the interaction of reinforcement corrosion and cyclic loading on the fatigue behavior of T-shaped RC beams, which can be further used to understand the long-term performance of bridge structures under complex marine environments.

16.
Environ Pollut ; 317: 120699, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403877

RESUMEN

Osteoporosis has become a major health problem in older women. Previous studies have linked individual metals exposure with osteoporosis, but combined effects remain inconclusive. We aimed to explore the individual and combined association between multiple metals mixture and osteoporosis risk in older Chinese women. A total of 2297 older women (aged ≥60) from the Hongshuihe region of Guangxi, southern China included. We measured 22 blood metal levels through inductively coupled plasma mass spectrometry. And osteoporosis was defined as a T score ≤ -2.5. The least absolute shrinkage and selection operator (LASSO) penalized regression, and Bayesian kernel machine regression (BKMR) models were performed to explore the association between blood metals and osteoporosis risk. Of 2297 older women, there were 829 osteoporosis and 1468 non-osteoporosis participants. The median age was 71 and 68 years old in the osteoporosis and the non-osteoporosis group, respectively. In the single-metal model, rubidium and vanadium were negatively associated with osteoporosis (P for trend = 0.02 and 0.002, respectively), and lead presented the reverse trend (P for trend = 0.01). The LASSO penalized regression model selected nine metals (calcium, cadmium, cobalt, lead, magnesium, rubidium, strontium, vanadium and zinc), which were included in the subsequent analysis. And the multiple-metal model presented a consistent trend with the single-metal model using the selected metals. Furthermore, we performed BKMR to explore the combined effect, and found an overall negative effect between metals mixture and osteoporosis risk when all the metals were fixed at 50th, and rubidium and vanadium were the main contributors. In addition, blood Rb and V were significantly negatively related to OP risk with other metals at different levels (25th, 50th and 75th percentiles). The study suggests metal mixture exposure and osteoporosis risk in older Chinese women, and further studies need to be conducted.


Asunto(s)
Rubidio , Vanadio , Humanos , Femenino , Anciano , Teorema de Bayes , Pueblos del Este de Asia , China/epidemiología , Envejecimiento
17.
J Hazard Mater ; 443(Pt B): 130249, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36332276

RESUMEN

Brain volume decrease in the anterior cingulate cortex (ACC) after lead (Pb) exposure has been linked to persistent impairment of attention behavior. However, the precise structural change and molecular mechanism for the Pb-induced ACC alteration and its contribution to inattention have yet to be fully characterized. The present study determined the role of miRNA regulated synaptic structural and functional impairment in the ACC and its relationship to attention deficit disorder in Pb exposed mice. Results showed that Pb exposure induced presynaptic impairment and structural alterations in the ACC. Furthermore, we screened for critical miRNA targets responsible for the synaptic alteration. We found that miR-130, which regulates presynaptic vesicle releasing protein SNAP-25, was responsible for the presynaptic impairment in the ACC and attention deficits in mice. Blocking miR-130 function reversed the Pb-induced decrease in the expression of its presynaptic target SNAP-25, leading to the redistribution of presynaptic vesicles, as well as improved presynaptic function and attention in Pb exposed mice. We report, for the first time, that miR-130 regulating SNAP-25 mediates Pb-induced presynaptic structural and functional impairment in the ACC along with attention deficit disorder in mice.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , MicroARNs , Animales , Ratones , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Cognición , Giro del Cíngulo/metabolismo , Plomo/toxicidad , Plomo/metabolismo , MicroARNs/metabolismo
18.
Environ Health Perspect ; 130(8): 87009, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36036794

RESUMEN

BACKGROUND: Exposure to heavy metals has been reported to be associated with multiple diseases. However, direct associations and potential mechanisms of heavy metals with physical disability remain unclear. OBJECTIVES: We aimed to quantify associations of heavy metals with physical disability and further explore the potential mechanisms of DNA methylation on the genome scale. METHODS: A cross-sectional study of 4,391 older adults was conducted and activities of daily living (ADL) disability were identified using a 14-item scale questionnaire including basic and instrumental activities to assess the presence of disability (yes or no) rated on a scale of dependence. Odds ratios (ORs) and 95% confidence intervals (CI) were estimated to quantify associations between heavy metals and ADL disability prevalence using multivariate logistic regression and Bayesian kernel machine regression (BKMR) models. Whole blood-derived DNA methylation was measured using the HumanMethylationEPIC BeadChip array. An ADL disability-related epigenome-wide DNA methylation association study (EWAS) was performed among 212 sex-matched ADL disability cases and controls, and mediation analysis was further applied to explore potential mediators of DNA methylation. RESULTS: Each 1-standard deviation (SD) higher difference in log10-transformed manganese, copper, arsenic, and cadmium level was significantly associated with a 14% (95% CI: 1.05, 1.24), 16% (95% CI:1.07, 1.26), 22% (95% CI:1.13, 1.33), and 15% (95% CI:1.06, 1.26) higher odds of ADL disability, which remained significant in the multiple-metal and BKMR models. A total of 85 differential DNA methylation sites were identified to be associated with ADL disability prevalence, among which methylation level at cg220000984 and cg23012519 (annotated to IRGM and PKP3) mediated 31.0% and 31.2% of manganese-associated ADL disability prevalence, cg06723863 (annotated to ESRP2) mediated 32.4% of copper-associated ADL disability prevalence, cg24433124 (nearest to IER3) mediated 15.8% of arsenic-associated ADL disability prevalence, and cg07905190 and cg17485717 (annotated to FREM1 and TCP11L1) mediated 21.5% and 30.5% of cadmium-associated ADL disability prevalence (all p<0.05). DISCUSSION: Our findings suggested that heavy metals contributed to higher prevalence of ADL disability and that locus-specific DNA methylation are partial mediators, providing potential biomarkers for further cellular mechanism studies. https://doi.org/10.1289/EHP10602.


Asunto(s)
Arsénico , Metales Pesados , Actividades Cotidianas , Anciano , Teorema de Bayes , Cadmio , Cobre , Estudios Transversales , Metilación de ADN , Epigenoma , Humanos , Manganeso , Análisis de Mediación
19.
Environ Sci Pollut Res Int ; 29(56): 85103-85113, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35793018

RESUMEN

The majority of epidemiological investigations on metal exposures and lipid metabolism employed cross-sectional designs and focused on individual metal. We explored the associations between metal mixture exposures and longitudinal changes in lipid profiles and potential sexual heterogeneity. We recruited 250 men and 73 women, aged 40 years at baseline (2012), and followed them up in 2020, from the manganese-exposed workers healthy cohort. We detected metal concentrations of blood cells at baseline with inductively coupled plasma mass spectrometry. Lipid profiles were repeatedly measured over 8 years of follow-up. We performed sparse partial least squares (sPLS) model to evaluate multi-pollutant associations. Bayesian kernel machine regression was utilized for metal mixtures as well as evaluating their joint impacts on lipid changes. In sPLS models, a positive association was found between manganese and change in total cholesterol (TC) (beta = 0.169), while a negative association was observed between cobalt (beta = - 0.134) and change in low density lipoprotein cholesterol (LDL-C) (beta = - 0.178) among overall participants, which were consistent in men. Interestingly, rubidium was positively associated with change in LDL-C (beta = 0.273) in women, while copper was negatively associated with change in TC (beta = - 0.359) and LDL-C (beta = - 0.267). Magnesium was negatively associated with change in TC (beta = - 0.327). We did not observe the significantly cumulative effect of metal mixtures on lipid changes. In comparison to other metals, manganese had a more significant influence on lipid change [group PIP (0.579) and conditional PIP (0.556) for TC change in men]. Furthermore, male rats exposed to manganese (20 mg/kg) had higher levels of LDL-C in plasma and more apparent inflammatory infiltration, vacuolation of liver cells, nuclear pyknosis, and fatty change than the controls. These findings highlight the potential role of metal mixtures in lipid metabolism with sex-dependent heterogeneity. More researches are needed to explore the underlying mechanisms.


Asunto(s)
Manganeso , Metales , Masculino , Femenino , Ratas , Animales , LDL-Colesterol , Estudios Transversales , Teorema de Bayes , Iones
20.
Toxicol Lett ; 365: 24-35, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35690225

RESUMEN

Environmental excessive manganese (Mn) exposure can cause neurotoxicity and neurodegenerative diseases. Long noncoding RNAs (lncRNAs) have been shown to affect the development of neurodegenerative diseases. However, whether lncRNAs are also linked to Mn-induced neurotoxicity has not been reported. In this study, we explored the role of lncRNAs in Mn-induced neurotoxicity and its mechanisms. LncSh2d3c was identified to be the significantly increased lncRNA in Mn-exposed N2a cells. Knockdown of lncSh2d3c increased the cell viability and inhibited cell apoptosis. Mechanistically, lncSh2d3c acted as a sponge for mmu-miR-675-5p, thereby preventing the inhibitory effect of mmu-miR-675-5p on Chmp4b. The binding potency of lncSh2d3c/mmu-miR-675-5p and mmu-miR-675-5p/Chmp4b was verified by RNA antisense purification (RAP) and luciferase reporter assays. Furthermore, we also found that the lncSh2d3c/mmu-miR-675-5p/Chmp4b/Bax axis might be associated with the learning ability and memory of mice after Mn exposure. These results revealed a novel mechanism of Mn-induced neuronal apoptosis through the lncSh2d3c/mmu-miR-675-5p/Chmp4b/Bax axis and suggested that lncSh2d3c may act as a key regulatory factor in Mn-induced neurotoxicity.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , MicroARNs , Neuronas , ARN Largo no Codificante , Proteína X Asociada a bcl-2 , Animales , Apoptosis/genética , Proliferación Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Manganeso/toxicidad , Ratones , MicroARNs/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , ARN Largo no Codificante/genética , Proteína X Asociada a bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA