Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38730039

RESUMEN

BACKGROUND: More frequent and intense wildfires will increase concentrations of smoke in schools and childcare settings. Low-cost sensors can assess fine particulate matter (PM2.5) concentrations with high spatial and temporal resolution. OBJECTIVE: We sought to optimize the use of sensors for decision-making in schools and childcare settings during wildfire smoke to reduce children's exposure to PM2.5. METHODS: We measured PM2.5 concentrations indoors and outdoors at four schools in Washington State during wildfire smoke in 2020-2021 using low-cost sensors and gravimetric samplers. We randomly sampled 5-min segments of low-cost sensor data to create simulations of brief portable handheld measurements. RESULTS: During wildfire smoke episodes (lasting 4-19 days), median hourly PM2.5 concentrations at different locations inside a single facility varied by up to 49.6 µg/m3 (maximum difference) during school hours. Median hourly indoor/outdoor ratios across schools ranged from 0.22 to 0.91. Within-school differences in concentrations indicated that it is important to collect measurements throughout a facility. Simulation results suggested that making handheld measurements more often and over multiple days better approximates indoor/outdoor ratios for wildfire smoke. During a period of unstable air quality, PM2.5 over the next hour indoors was more highly correlated with the last 10-min of data (mean R2 = 0.94) compared with the last 3-h (mean R2 = 0.60), indicating that higher temporal resolution data is most informative for decisions about near-term activities indoors. IMPACT STATEMENT: As wildfires continue to increase in frequency and severity, staff at schools and childcare facilities are increasingly faced with decisions around youth activities, building use, and air filtration needs during wildfire smoke episodes. Staff are increasingly using low-cost sensors for localized outdoor and indoor PM2.5 measurements, but guidance in using and interpreting low-cost sensor data is lacking. This paper provides relevant information applicable for guidance in using low-cost sensors for wildfire smoke response.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38589565

RESUMEN

BACKGROUND: Statistical models of air pollution enable intra-urban characterization of pollutant concentrations, benefiting exposure assessment for environmental epidemiology. The new generation of low-cost sensors facilitate the deployment of dense monitoring networks and can potentially be used to improve intra-urban models of air pollution. OBJECTIVE: Develop and evaluate a spatiotemporal model for nitrogen dioxide (NO2) in the Puget Sound region of WA, USA for the Adult Changes in Thought Air Pollution (ACT-AP) study and assess the contribution of low-cost sensor data to the model's performance through cross-validation. METHODS: We developed a spatiotemporal NO2 model for the study region incorporating data from 11 agency locations, 364 supplementary monitoring locations, and 117 low-cost sensor (LCS) locations for the 1996-2020 time period. Model features included long-term time trends and dimension-reduced land use regression. We evaluated the contribution of LCS network data by comparing models fit with and without sensor data using cross-validated (CV) summary performance statistics. RESULTS: The best performing model had one time trend and geographic covariates summarized into three partial least squares components. The model, fit with LCS data, performed as well as other recent studies (agency cross-validation: CV- root mean square error (RMSE) = 2.5 ppb NO2; CV- coefficient of determination ( R 2 ) = 0.85). Predictions of NO2 concentrations developed with LCS were higher at residential locations compared to a model without LCS, especially in recent years. While LCS did not provide a strong performance gain at agency sites (CV-RMSE = 2.8 ppb NO2; CV- R 2 = 0.82 without LCS), at residential locations, the improvement was substantial, with RMSE = 3.8 ppb NO2 and R 2 = 0.08 (without LCS), compared to CV-RMSE = 2.8 ppb NO2 and CV- R 2 = 0.51 (with LCS). IMPACT: We developed a spatiotemporal model for nitrogen dioxide (NO2) pollution in Washington's Puget Sound region for epidemiologic exposure assessment for the Adult Changes in Thought Air Pollution study. We examined the impact of including low-cost sensor data in the NO2 model and found the additional spatial information the sensors provided predicted NO2 concentrations that were higher than without low-cost sensors, particularly in recent years. We did not observe a clear, substantial improvement in cross-validation performance over a similar model fit without low-cost sensor data; however, the prediction improvement with low-cost sensors at residential locations was substantial. The performance gains from low-cost sensors may have been attenuated due to spatial information provided by other supplementary monitoring data.

3.
Paediatr Perinat Epidemiol ; 38(4): 359-369, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450855

RESUMEN

BACKGROUND: The Children's Assessing Imperial Valley Respiratory Health and the Environment (AIRE) study is a prospective cohort study of environmental influences on respiratory health in a rural, southeastern region of California (CA), which aims to longitudinally examine the contribution of a drying saline lake to adverse health impacts in children. OBJECTIVES: This cohort was established through a community-academic partnership with the goal of assessing the health effects of childhood exposures to wind-blown particulate matter (PM) and inform public health action. We hypothesize that local PM sources are related to poorer children's respiratory health. POPULATION: Elementary school children in Imperial Valley, CA. DESIGN: Prospective cohort study. METHODS: Between 2017 and 2019, we collected baseline information on 731 children, then follow-up assessments yearly or twice-yearly since 2019. Data have been collected on children's respiratory health, demographics, household characteristics, physical activity and lifestyle, via questionnaires completed by parents or primary caregivers. In-person measurements, conducted since 2019, repeatedly assessed lung function, height, weight and blood pressure. Exposure to air pollutants has been assessed by multiple methods and individually assigned to participants using residential and school addresses. Health data will be linked to ambient and local sources of PM, during and preceding the study period to understand how spatiotemporal trends in these environmental exposures may relate to respiratory health. PRELIMINARY RESULTS: Analyses of respiratory symptoms indicate a high prevalence of allergies, bronchitic symptoms and wheezing. Asthma diagnosis was reported in 24% of children at enrolment, which exceeds both CA state and US national prevalence estimates for children. CONCLUSIONS: The Children's AIRE cohort, while focused on the health impacts of the drying Salton Sea and air quality in Imperial Valley, is poised to elucidate the growing threat of drying saline lakes and wind-blown dust sources to respiratory health worldwide, as sources of wind-blown dust emerge in our changing climate.


Asunto(s)
Exposición a Riesgos Ambientales , Enfermedades Respiratorias , Humanos , Niño , Femenino , Masculino , Exposición a Riesgos Ambientales/efectos adversos , California/epidemiología , Estudios Prospectivos , Enfermedades Respiratorias/epidemiología , Enfermedades Respiratorias/etiología , Material Particulado/efectos adversos , Material Particulado/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Salud Infantil , Contaminación del Aire/efectos adversos , Población Rural/estadística & datos numéricos
4.
Sci Total Environ ; 922: 171306, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38423310

RESUMEN

Exhaust from diesel combustion engines is an important contributor to urban air pollution and poses significant risk to human health. Diesel exhaust contains a chemical class known as nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) and is enriched in 1-nitropyrene (1-NP), which has the potential to serve as a marker of diesel exhaust. The isomeric nitro-PAHs 2-nitropyrene (2-NP) and 2-nitrofluoranthene (2-NFL) are secondary pollutants arising from photochemical oxidation of pyrene and fluoranthene, respectively. Like other important air toxics, there is not extensive monitoring of nitro-PAHs, leading to gaps in knowledge about relative exposures and urban hotspots. Epiphytic moss absorbs water, nutrients, and pollutants from the atmosphere and may hold potential as an effective biomonitor for nitro-PAHs. In this study we investigate the suitability of Orthotrichum lyellii as a biomonitor of diesel exhaust by analyzing samples of the moss for 1-NP, 2-NP, and 2-NFL in the Seattle, WA metropolitan area. Samples were collected from rural parks, urban parks, residential, and commercial/industrial areas (N = 22 locations) and exhibited increasing concentrations across these land types. Sampling and laboratory method performance varied by nitro-PAH, but was generally good. We observed moderate to moderately strong correlation between 1-NP and select geographic variables, including summer normalized difference vegetation index (NDVI) within 250 m (r = -0.88, R2 = 0.77), percent impervious surface within 50 m (r = 0.83, R2 = 0.70), percent high development land use within 500 m (r = 0.77, R2 = 0.60), and distance to nearest secondary and connecting road (r = -0.75, R2 = 0.56). The relationships between 2-NP and 2-NFL and the geographic variables were generally weaker. Our results suggest O. lyellii is a promising biomonitor of diesel exhaust, specifically for 1-NP. To our knowledge this pilot study is the first to evaluate using moss concentrations of nitro-PAHs as biomonitors of diesel exhaust.


Asunto(s)
Contaminantes Atmosféricos , Bryopsida , Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Humanos , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Proyectos Piloto , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente/métodos
5.
Environ Pollut ; 343: 123227, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38147948

RESUMEN

Determining the most feasible and cost-effective approaches to improving PM2.5 exposure assessment with low-cost monitors (LCMs) can considerably enhance the quality of its epidemiological inferences. We investigated features of fixed-site LCM designs that most impact PM2.5 exposure estimates to be used in long-term epidemiological inference for the Adult Changes in Thought Air Pollution (ACT-AP) study. We used ACT-AP collected and calibrated LCM PM2.5 measurements at the two-week level from April 2017 to September 2020 (N of monitors [measurements] = 82 [502]). We also acquired reference-grade PM2.5 measurements from January 2010 to September 2020 (N = 78 [6186]). We used a spatiotemporal modeling approach to predict PM2.5 exposures with either all LCM measurements or varying subsets with reduced temporal or spatial coverage. We evaluated the models based on a combination of cross-validation and external validation at locations of LCMs included in the models (N = 82), and also based on an independent external validation with a set of LCMs not used for the modeling (N = 30). We found that the model's performance declined substantially when LCM measurements were entirely excluded (spatiotemporal validation R2 [RMSE] = 0.69 [1.2 µg/m3]) compared to the model with all LCM measurements (0.84 [0.9 µg/m3]). Temporally, using the farthest apart measurements (i.e., the first and last) from each LCM resulted in the closest model's performance (0.79 [1.0 µg/m3]) to the model with all LCM data. The models with only the first or last measurement had decreased performance (0.77 [1.1 µg/m3]). Spatially, the model's performance decreased linearly to 0.74 (1.1 µg/m3) when only 10% of LCMs were included. Our analysis also showed that LCMs located in densely populated, road-proximate areas improved the model more than those placed in moderately populated, road-distant areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA