Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Biofuels ; 10: 256, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29142591

RESUMEN

BACKGROUND: Cellulose, the most abundant biopolymer on earth, is an alternative for fossil fuels as a renewable feedstock for the production of second-generation biofuels and other chemicals. The discovery of novel, highly efficient ß-glucosidases remains as one of the major bottlenecks for cellulose degradation. In this context, the ascomycete Talaromyces amestolkiae, isolated from cereal samples, has been studied as a promising source for these enzymes. RESULTS: BGL-2 is the major ß-glucosidase secreted by this fungus in the presence of cellulosic inductors. This enzyme possesses a CBD (Cellulose Binding Domain), an unusual feature among this type of proteins. Besides, when growing on cellulose, the fungus produced two different bgl-2 mRNAs that were cloned and expressed in Pichia pastoris. A complete recombinant protein (BGL-2*) and its truncated form, lacking CBD (BGL-2T*), have been purified, characterized and compared with the native enzyme (BGL-2). The three BGL-2 forms studied are highly stable in a wide pH range, but BGL-2T* showed an improved thermal stability at 50 °C after 72 h. Using p-nitrophenyl-ß-d-glucopyranoside as a substrate, the steady-state kinetic characterization of the three proteins showed a similar Km and kcat for BGL-2 and BGL-2*, while the truncated protein displayed a threefold higher value for kcat . All tested BGL-2 enzymes were as well highly efficient using cellobiose and other short oligosaccharides as a substrate. In view of biotechnological applications, the recombinant T. amestolkiae enzymes in saccharification of brewers' spent grain were studied, being comparable to commercial ß-glucosidase cocktails. CONCLUSION: A new ß-glucosidase from T. amestolkiae has been studied. The enzyme, containing a functional CBD, has been expressed in P. pastoris. The comparative analyses of the native protein and its recombinant forms, with and without CBD, suggest that they could be suitable tools for valorization of lignocellulosic biomass.

2.
Mol Microbiol ; 79(2): 402-18, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21219460

RESUMEN

The PhaF is a nucleoid-associated like protein of Pseudomonas putida KT2442 involved in the polyhydroxyalkanoate (PHA) metabolism. Its primary structure shows two modular domains; the N-terminal PHA granule-binding domain (phasin domain) and the C-terminal half containing AAKP-like tandem repeats characteristic of the histone H1 family. Although the PhaF binding to PHA granules and its role as transcriptional regulator have been previously demonstrated, the cell physiology meaning of these properties remains unknown. This work demonstrates that PhaF plays a crucial role in granule localization within the cell. TEM and flow cytometry studies of cells producing granules at early growth stage demonstrated that PhaF directs the PHA granules to the centre of the cells, forming a characteristic needle array. Our studies demonstrated the existence of two markedly different cell populations in the strain lacking PhaF protein, i.e. cells with and without PHA. Complementation studies definitively demonstrated a key role of PhaF in granule segregation during the cell division ensuring the equal distribution of granules between daughter cells. In vitro studies showed that PhaF binds DNA through its C-terminal domain in a non-specific manner. All these findings suggested a main role of PhaF in PHA apparatus through interactions with the segregating chromosome.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Gránulos Citoplasmáticos/metabolismo , Polihidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Citometría de Flujo , Eliminación de Gen , Prueba de Complementación Genética , Microscopía Electrónica de Transmisión , Pseudomonas putida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA