Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Microbiol ; 107: 104060, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35953193

RESUMEN

An extensive cardinal parameter growth and growth boundary model for C. sporogenes, as a surrogate for proteolytic C. botulinum, was developed to include the inhibitory effect of 11 environmental factors. 626 maximum specific growth rates (µmax) in broth were generated to determine cardinal parameter values for the growth inhibiting effect of temperature, pH, NaCl/water activity (aw), organic acids (acetic, benzoic, citric, lactic, sorbic) and phosphate melting salts (ortho-, di- and tri-phosphates). µmax-values for C. sporogenes growing in well-characterized processed cheeses were used for product calibration (n = 10) and for product evaluation of the developed broth-model (n = 29). 112 growth/no-growth responses and including 104 µmax-values from the scientific literature for 58 different isolates of proteolytic and toxigenic C. botulinum (Group I) were used for further model evaluation. The developed model had less bias and a higher percentage of correct predictions than available models and was acceptable for processed cheese and good for meat products. The new and extensive model can predict combinations of environmental factors that prevent growth of C. sporogenes and of proteolytic C. botulinum. These predictions are expected to facilitate development or re-formulation of processed cheese and meat products where growth is prevented.


Asunto(s)
Queso , Clostridium botulinum , Clostridium , Microbiología de Alimentos
2.
Food Chem Toxicol ; 153: 112285, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34023460

RESUMEN

Although sushi is considered as a healthy food, it can also be a route of exposure to chemical contaminants such as potentially toxic trace elements. In this study, we analysed the concentration of Cd, I, Ni, Pb and total Hg, as well as iAs and MeHg in sushi samples. Iodine levels were higher in samples containing seaweed, while iAs concentrations were greater in rice-containing sushi. In turn, total Hg and MeHg were significantly higher in sushi samples with tuna. Health risks of sushi consumption were assessed for three population groups: children, adolescents and adults. Considering an average intake of 8 sushi pieces for adults and adolescents, and 3 sushi pieces for children, the estimated exposure to MeHg by adolescents exceeded the tolerable daily intake set by EFSA, while MeHg intake by children and adults was below, but close to that threshold. A relatively high daily exposure of Ni and Pb was also found, especially for adolescents. Since this study focused only on the consumption of sushi, the contribution of other food groups to the overall dietary exposure should not be disregarded. It might lead to an exposure to MeHg and other trace elements above the health-based guideline values.


Asunto(s)
Exposición Dietética/análisis , Productos Pesqueros/análisis , Contaminación de Alimentos/análisis , Animales , Arsénico/análisis , Peces , Humanos , Yodo/análisis , Plomo/análisis , Mercurio , Compuestos de Metilmercurio/análisis , Níquel/análisis , Nivel sin Efectos Adversos Observados , España
3.
Front Chem ; 7: 797, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803725

RESUMEN

Tryptophan is a key component in many biological processes and an essential amino acid in food and feed materials. Analysis of the tryptophan content in proteins or protein-containing matrices has always been a challenge. We show here that the preparation of samples prior to tryptophan analysis can be significantly simplified, and the time consumption reduced, by using ascorbic acid as antioxidant to eliminate the problem of tryptophan degradation during alkaline hydrolysis. Combined with separation by HPLC and detection by Single Quadrupole Mass Spectrometry, this allows the analytical run time to be reduced to 10 min. The alkaline hydrolysate obtained in the method presented here may be combined with the oxidized hydrolysate obtained when sulfur-containing amino acids are to be measured, thus essentially providing two analyses for the time of one.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA