RESUMEN
Objective.High-dose-rate (HDR) brachytherapy lacks routinely available treatment verification methods. Real-time tracking of the radiation source during HDR brachytherapy can enhance treatment verification capabilities. Recent developments in source tracking allow for measurement of dwell times and source positions with high accuracy. However, more clinically relevant information, such as dose discrepancies, is still needed. To address this, a real-time dose calculation implementation was developed to provide more relevant information from source tracking data. A proof-of-principle of the developed tool was shown using source tracking data obtained from a 3D-printed anthropomorphic phantom.Approach.Software was developed to calculate dose-volume-histograms (DVH) and clinical dose metrics from experimental HDR prostate treatment source tracking data, measured in a realistic pelvic phantom. Uncertainty estimation was performed using repeat measurements to assess the inherent dose measuring uncertainty of thein vivodosimetry (IVD) system. Using a novel approach, the measurement uncertainty can be incorporated in the dose calculation, and used for evaluation of cumulative dose and clinical dose-volume metrics after every dwell position, enabling real-time treatment verification.Main results.The dose calculated from source tracking measurements aligned with the generated uncertainty bands, validating the approach. Simulated shifts of 3 mm in 5/17 needles in a single plan caused DVH deviations beyond the uncertainty bands, indicating errors occurred during treatment. Clinical dose-volume metrics could be monitored in a time-resolved approach, enabling early detection of treatment plan deviations and prediction of their impact on the final dose that will be delivered in real-time.Significance.Integrating dose calculation with source tracking enhances the clinical relevance of IVD methods. Phantom measurements show that the developed tool aids in tracking treatment progress, detecting errors in real-time and post-treatment evaluation. In addition, it could be used to define patient-specific action limits and error thresholds, while taking the uncertainty of the measurement system into consideration.
Asunto(s)
Braquiterapia , Fantasmas de Imagen , Dosis de Radiación , Dosificación Radioterapéutica , Braquiterapia/métodos , Braquiterapia/instrumentación , Incertidumbre , Humanos , Factores de Tiempo , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de la Próstata/radioterapia , Prueba de Estudio Conceptual , MasculinoRESUMEN
PURPOSE: Even though High Dose Rate (HDR) brachytherapy has good treatment outcomes in different treatment sites, treatment verification is far from widely implemented because of a lack of easily available solutions. Previously it has been shown that an imaging panel (IP) near the patient can be used to determine treatment parameters such as the dwell time and source positions in a single material pelvic phantom. In this study we will use a heterogeneous head phantom to test this IP approach, and simulate common treatment errors to assess the sensitivity and specificity of the error-detecting capabilities of the IP. METHODS AND MATERIALS: A heterogeneous head-phantom consisting of soft tissue and bone equivalent materials was 3D-printed to simulate a base of tongue treatment. An High Dose Rate treatment plan with 3 different catheters was used to simulate a treatment delivery, using dwell times ranging from 0.3 s to 4 s and inter-dwell distances of 2 mm. The IP was used to measure dwell times, positions and detect simulated errors. Measured dwell times and positions were used to calculate the delivered dose. RESULTS: Dwell times could be determined within 0.1 s. Source positions were measured with submillimeter accuracy in the plane of the IP, and average distance accuracy of 1.7 mm in three dimensions. All simulated treatment errors (catheter swap, catheter shift, afterloader errors) were detected. Dose calculations show slightly different distributions with the measured dwell positions and dwell times (gamma pass rate for 1 mm/1% of 96.5%). CONCLUSIONS: Using an IP, it was possible to verify the treatment in a realistic heterogeneous phantom and detect certain treatment errors.
Asunto(s)
Braquiterapia , Humanos , Dosificación Radioterapéutica , Braquiterapia/métodos , Diseño de Equipo , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Impresión TridimensionalRESUMEN
PURPOSE: Dose escalation yields higher complete response to rectal tumors, which may enable the omission of surgery. Dose escalation using 50 kVp contact x-ray brachytherapy (CXB) allow the treatment of a selective volume, resulting in low toxicity and organs-at-risk preservation. However, the use of CXB devices is limited because of its high cost and lack of treatment planning tools. Hence, the MAASTRO applicator (for HDR 192Ir sources) was developed and characterized by measurements and Monte Carlo simulations to be a cost-effective alternative to CXB devices. METHODS AND MATERIALS: A cylindrical applicator with lateral shielding was designed to be used with a rectoscope using its tip as treatment surface. Both the applicator and the rectoscope have a slanted edge to potentially allow easier placement against tumors. The applicator design was achieved by Monte Carlo modeling and validated experimentally with film dosimetry, using the Papillon 50 (P50) device as reference. RESULTS: The applicator delivers CXB doses in less than 9 min using a 20375 U source for a treatment area of approximately 20 × 20 mm2 at 2 mm depth. Normalized at 2 mm, the dose falloff for depths of 0 mm, 5 mm, and 10 mm are 130%, 70%, and 43% for the P50 and 140%, 67%, and 38% for the MAASTRO applicator, respectively. CONCLUSIONS: The MAASTRO applicator was designed to use HDR 192Ir sources to deliver a dose distribution similar to those of CXB devices. The applicator may provide a cost-effective solution for endoluminal boosting with clinical treatment planning system integration.