Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cancer Res Commun ; 3(2): 325-337, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36860656

RESUMEN

The absence of T cells in the tumor microenvironment of solid tumors is a major barrier to cancer immunotherapy efficacy. Oncolytic viruses, including reovirus type 3 Dearing (Reo), can recruit CD8+ T cells to the tumor and thereby enhance the efficacy of immunotherapeutic strategies that depend on high T-cell density, such as CD3-bispecific antibody (bsAb) therapy. TGF-ß signaling might represent another barrier to effective Reo&CD3-bsAb therapy due to its immunoinhibitory characteristics. Here, we investigated the effect of TGF-ß blockade on the antitumor efficacy of Reo&CD3-bsAb therapy in the preclinical pancreatic KPC3 and colon MC38 tumor models, where TGF-ß signaling is active. TGF-ß blockade impaired tumor growth in both KPC3 and MC38 tumors. Furthermore, TGF-ß blockade did not affect reovirus replication in both models and significantly enhanced the Reo-induced T-cell influx in MC38 colon tumors. Reo administration decreased TGF-ß signaling in MC38 tumors but instead increased TGF-ß activity in KPC3 tumors, resulting in the accumulation of α-smooth muscle actin (αSMA+) fibroblasts. In KPC3 tumors, TGF-ß blockade antagonized the antitumor effect of Reo&CD3-bsAb therapy, even though T-cell influx and activity were not impaired. Moreover, genetic loss of TGF-ß signaling in CD8+ T cells had no effect on therapeutic responses. In contrast, TGF-ß blockade significantly improved therapeutic efficacy of Reo&CD3-bsAb in mice bearing MC38 colon tumors, resulting in a 100% complete response. Further understanding of the factors that determine this intertumor dichotomy is required before TGF-ß inhibition can be exploited as part of viroimmunotherapeutic combination strategies to improve their clinical benefit. Significance: Blockade of the pleiotropic molecule TGF-ß can both improve and impair the efficacy of viro-immunotherapy, depending on the tumor model. While TGF-ß blockade antagonized Reo&CD3-bsAb combination therapy in the KPC3 model for pancreatic cancer, it resulted in 100% complete responses in the MC38 colon model. Understanding factors underlying this contrast is required to guide therapeutic application.


Asunto(s)
Neoplasias del Colon , Neoplasias Pancreáticas , Ratones , Animales , Linfocitos T CD8-positivos , Factor de Crecimiento Transformador beta , Neoplasias Pancreáticas/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
2.
Gastroenterology ; 164(5): 841-846, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36702361

RESUMEN

Using colorectal cancer as a model, we review some of the insights into cancer evolution afforded by cancer sequencing. These include nonlinear and neutral evolution; polyclonality of driver mutations and parallel evolution in adenomas, although these are rare in carcinomas; the ability of mutational processes to shape evolution against the force of selection; the presence of rare driver genes that function in the same signaling pathways as the longstanding canonical drivers; and the existence of selective windows that constrain the functional effects of cancer driver mutations within limits. Many of these nascent evolutionary paradigms are potentially important for treating colorectal cancers as well as understanding their development.


Asunto(s)
Carcinoma , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Mutación , Carcinoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA